chevron icon chevron icon chevron icon

Algebra

Algebra involves the representation of numbers using letters, such as \(a, b, c, x, y, z\) etc. We use letters to represent unknown numbers.

In this article, we are going to look at what we need to know for algebra:

  1. Using letters to represent unknown numbers 
  2. Algebraic rules for multiplying and dividing
  3. Simplifying simple algebraic expressions
  4. Evaluating simple algebraic expressions

 

1. Using Letters To Represent Unknown Numbers

Practice Problems

Example 1a: 

Jason is \(3\) years younger than Kenny. 

(a) If Jason is \(7\) years old, how old is Kenny?

Solution:

​ Jason is 7 years old, how old is Kenny?  ​

Jason’s age \(= 7\) years old 

Kenny’s age 
\(= 7+3\)
\( = 10\) years old

Answer:

\(10\) years old

 

Example 1b: 

(b) If Jason is \(x\) years old, how old is Kenny?

Solution:

​ Jason is x years old, how old is Kenny  ​

Jason’s age \(= x\) years old

Kenny’s age \(= (x+3)\) years old 

Answer:

\((x+3)\) years old

Note: Remember to put a pair of brackets for algebraic expressions with units as the units belong to the whole expression.

 

Example 2: 

Peter bought \(y\) apples. He ate \(4\) apples. How many apples had he left in terms of \(y\)?

Solution:

Number of apples left \(= (y-4)\) apples

Answer:

\((y-4)\) apples

 

Note: Did you observe that algebraic terms and numbers cannot be simplified further? This is because they are called unlike terms. Only algebraic terms of the same kind can be grouped together. You will learn more about this below.


 

2. Algebraic Rules For Multiplying And Dividing

  1. For algebraic expressions involving multiplication, do not write the multiplication sign. For example:

\(\begin{align} 4 \times y &= 4y \\[2ex] 7 \times x &= 7x \\[2ex] b \times 6 &= 6b \end{align}\)

  1. For algebraic terms, numbers are always in front of the letters. For example:

\(\begin{align} 9 \times y &= 9y, \;\;\text{ not }\;\; y9\\[2ex] a \times 8 &= 8a, \;\;\text{ not }\;\; a8 \end{align}\)

  1. For the product of \(1\) and any letter, the number \(1\) is not written. For example:

\(\begin{align} 1 \times y &= y \\[2ex] a \times 1 &= a \end{align}\)

  1. For algebraic expressions involving division, do not write the division sign. For example:

\(\begin{align} 8y \div 5 &= \frac {8y}{5} \\[2ex] 9a \div 2 &= \frac {9a}{2} \\[2ex] 7 \div 3b &= \frac {7}{3b} \end{align}\)

The first number in the division statement is the numerator while the second number is the denominator.

Note: Take note of the last example, \(3b\) is written as the denominator. The expression \(\displaystyle{\frac {7}{3b}}\) is not the same as \(\displaystyle{\frac {7}{3}b}\) or \(\displaystyle{\frac {7b}{3}}\). Think about it, why?

 

Practice Problems

Example 1: 

There are \(4\) bags. If there are \(m\) books in each bag, how many books are there altogether?

Solution:

\(\begin{align} \text{Total number of books} &= 4\times m\\[2ex] &=4m \end{align} \) 

Answer:

\(4m\) books

 

Example 2: 

What is the product of \(3\) and \(b\)?

Solution:

\(\begin{align} \text{Product of 3 and }b &= 3\times b\\[2ex] &=3b \end{align}\)

Answer:

\(3b\)

 

Example 3: 

Gary bought some chocolate bars for \(7\) students. He gave the same number of chocolate bars to each student. If he bought \(w\) chocolate bars, how many chocolate bars would each student receive?

Solution:

\(\begin{align} \text{No. of chocolate bars each student receive} &= w\div 7\\[2ex] &=\frac {w}{7} \end{align}\)

Answer:

\(\displaystyle{\frac {w}{7}}\) chocolate bars


 

3. Simplifying Algebraic Expressions

We can only add or subtract algebra of the same letters. For example: 

\(\begin{align} 5a - 3a &= 2a \\[2ex] 5b - 8 &= (5b-8) \end{align}\)

Note: Terms that do not have the same letters cannot be simplified. Only algebraic terms of the same kind can be simplified by addition or subtraction. We call them like terms.

To simplify algebraic expressions:

Step 1:

Identify all the terms with the same letters first

Step 2: 

Rearrange them (remember the sign belongs to the term behind it)

Step 3

Add or subtract algebra of the same letters or like terms

 

Practice Problems

Example 1: 

Simplify \(3b+2-b+5\) 

Solution:

Simplify 3b + 2 - b + 5

\(\begin{align} &3b+2-b+5\\[2ex] &= 3b-b+2+5 \\[2ex] &=2b+7 \end{align}\)

Answer:

\(2b+7\)

 

Example 2: 

Simplify \(6a+10-2a-3\) 

Solution:

\(\begin{align} &6a+10-2a-3\\[2ex] &= 6a-2a+10-3 \\[2ex] &=4a+7 \end{align}\) 

Answer: 

\(4a+7\)

 

Example 3: 

Simplify \(10w-3-5w+13+3w\) 

Solution:

\(\begin{align} &10w-3-5w+13+3w\\[2ex] &=10w-5w+3w-3+13 \\[2ex] &=8w+10 \end{align}\)

Answer:

\(8w+10\)


 

4. Evaluating Simple Algebraic Expressions

To evaluate algebraic expressions,

Step 1: 

Substitute the letter by a given value.

Step 2: 

Work out the final answer.

 

Practice Problems

Example 1:

Evaluate the following equation given that \(a=3\) .

\(5a+13\)

Solution: 

\(\begin{align*} &5a + 13\\[2ex] &= 5 \times 3 + 13 \\[2ex] &= 15 + 13 \\[2ex] &= 28 \end{align*}\)

Answer: 

\(28\)

 

Summary

In this topic, we learnt how to use letters to represent unknown numbers.

  1. These letters can represent any numerical value.
  2. For algebraic expressions involving multiplication, do not write the multiplication sign.
  3. For algebraic terms, numbers are always in front of the letters. 
  4. For the product of 1 and any letter, the number 1 is not written. 
  5. For algebraic expressions involving division, do not write the division sign.


 

Continue Learning
Algebra Distance, Speed and Time
Volume of Cubes and Cuboid Fundamentals Of Pie Chart
Finding Unknown Angles Number Patterns: Grouping & Common Difference
Fractions Of Remainder Fractions - Division
Ratio Repeated Identity: Ratio Strategies

 

Kiểm tra kiến thức

Câu hỏi 1/4

Simplify (7m + 5 − 2m) ÷ 3

A. 

3m + 5 / 3

B. 

9m + 5 / 3

C. 

(5m + 5) / 3

D. 

(9m + 5) / 3

Giải thích

Ans: (3) (5m + 5) / 3

Câu hỏi 2/4

A watermelon cost \($3\). Mrs Boh bought two such watermelons and had \($\text{J}\) left after buying the watermelons. How much money did she have before buying the watermelons in terms of j?

A. 

$ ( j − 3 )

B. 

$ ( j + 3 )

C. 

$ ( j − 6 )

D. 

$ ( j + 6 )

Giải thích

Ans: (4) $ ( j + 6 )

Câu hỏi 3/4

Adam had thrice as much money as Bell. Bell had twice as much money as Chris. If Adam, Bell and Chris had $36y altogether, how much money did Bell have?

A. 

$ 4 y

B. 

$ 12 y

C. 

$ 24 y

D. 

$ 8 y

Giải thích

Ans: (4) $ 8 y

Câu hỏi 4/4

Christian had m packets of game cards and Ahmad had thrice as many packets of game cards as Christian. The two boys had a total of 28 packets of game cards. If Ahmad gave away 2 packets of game cards, how many packets of game cards had he left?

A. 

5 packets

B. 

7 packets

C. 

19 packets

D. 

21 packets

Giải thích

Ans: (3) 19 packets

Trang trước
Trang kế
Trang trước
Trang kế
Nhận bài đánh giá năng lực miễn phí!
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Gần được rồi!
 
Arrow Down Arrow Down
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Geniebook đã nhận được yêu cầu của bạn!
Chuyên viên tư vấn Geniebook sẽ liên hệ với ba mẹ trong vòng 24h.
*Bằng việc cung cấp số điện thoại, chúng tôi đã được sự đồng ý của bạn để liên hệ tư vấn. Xem thêm Chính sách bảo mật.
Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!