chevron icon chevron icon chevron icon

Fractions - Addition & Subtraction

In this article, we will learn more about Addition and Subtraction of Fractions in P5 level.  We will also be solving simple word problems involving addition and subtraction.

The learning objectives are:

  1. Relating fractions and division
  2. Addition of mixed numbers 
  3. Subtraction of mixed numbers 
  4. Simple word problems involving addition and subtraction of mixed numbers

1. Relating Fractions And Division

Fraction is related to division. 

\(\begin{align*} \frac {1} {3} \end{align*}\) is the same as \(\begin{align*} 1 \div 3 \end{align*}\).

 

Question 1: 

Express each of the following as a fraction. 

  1.  \(\begin{align*} 3 \div 5 =\text{__________} \end{align*}\)

  2. \(\begin{align*} 5 \div 9 = \text{__________} \end{align*}\)

  3. \(\begin{align*} 6 \div 11 = \text{__________} \end{align*}\)

 

Solution: 

  1. \(\begin{align*} 3 \div 5 =\frac {3}{5} \end{align*}\)

  2. \(\begin{align*} 5 \div 9 = \frac {5}{9} \end{align*}\)

  3. \(\begin{align*} 6 \div 11 = \frac {6}{11} \end{align*}\)

 

Question 2: 

Mary bought 2 pies. She divided it equally among her 3 children. What fraction of a pie did each child receive?

 

Solution: 

Fraction of a pie each child received \(\begin{align*} =2 \div 3 \end{align*}\)

\(\begin{align*} = \frac {2}{3} \end{align*}\)

Answer:

\(\begin{align*} \frac {2}{3} \end{align*}\)

 

Question 3:

Jack baked 15 muffins and shared them equally with 6 friends. What fraction of the muffins did each of them receive?

 

Solution: 

Total muffins baked = 15 muffins

Total number of friends including Jack = 7

15 muffins are shared equally among 7 people.

 

Method 1:

Fraction of muffins received by each friend \(\begin{align*} = 15 \div 7 \end{align*}\)

        \(\begin{align*} &=\frac {15} {7} \\ \\ &=2\frac {1} {7}\\ \end{align*}\)

Method 2:

 

Answer:

\(\begin{align*} 2 \frac {1}{7} \end{align*}\)

2. Addition Of Mixed Numbers 

To do addition of mixed numbers, we do the following steps:

 

Step 1:

Add the whole numbers.

Step 2:

Ensure that the denominators are the same. Make the denominators the same if they are not.

Step 3:

Add the fractions. 

Step 4:

Simplify and express as a mixed number if possible. 

 

Question 1: 

Add the following.

\(\begin{align*} 2\frac { 2} { 5} + 5\frac {1 } {5 } \end{align*}\)

 

Solution: 

\(\begin{align*} 2\frac { 2} { 5} + 5\frac {1 } {5 } &= 7\frac { 2} { 5} + \frac {1 } {5 }\\ \\ &= 7\frac { 3} { 5} \\ \end{align*}\)

 

Question 2: 

Add the following.

\(\begin{align*} 1\frac {7} {10} + 6\frac {9} {10} \end{align*}\)

 

Solution: 

\(\begin{align*} 1\frac { 7} { 10} + 6\frac {9 } {10 } &= 7\frac { 7} { 10} + \frac {9 } {10 }\\ \\ &= 7\frac { 16} { 10} \\ \\ &= 8\frac { 6} { 10} \\ \\ &= 8\frac { 3} { 5} \\ \end{align*}\)
 

Answer:
\(\begin{align*} 8\frac { 3} { 5} \end{align*}\)

 

Question 3: 

Add the following.

\(\begin{align*} 2\frac {3} {4} + 3\frac {5} {6} \end{align*}\)

 

Solution: 

\(\begin{align*} 2\frac { 3} { 4} + 3\frac {5 } {6} &= 5\frac { 3} { 4} + \frac {5 } {6 }\\ \\ &= 5\frac { 9} { 12} + \frac {10 } {12 }\\ \\ &= 5\frac { 19} { 12} \\ \\ &= 6\frac { 7} { 12} \\ \end{align*} \)
 

Answer:

\(\begin{align*} 6\frac { 7} { 12} \end{align*}\)

 

Question 4: 

Add the following.

\(\begin{align*} 1\frac {6} {7} + 5\frac {9} {14} \end{align*}\)

 

Solution: 

\(\begin{align*} 1\frac { 6} { 7} + 5\frac {9 } {14} &= 6\frac { 6} { 7} + \frac {9 } {14 }\\ \\ &= 6\frac { 12} { 14} + \frac { 9} { 14}\\ \\ &= 6\frac { 21} { 14} \\ \\ &= 7\frac { 7} { 14} \\ \\ &= 7\frac { 1} { 2} \\ \end{align*}\)

Answer:

\(\begin{align*} 7\frac { 1} { 2} \end{align*}\)

 

3. Subtraction Of Mixed Numbers

To do addition of mixed numbers, we do the following steps:

 

Step 1:

Subtract the whole numbers.

Step 2:

Ensure that the denominators are the same. Make the denominators the same if they are not.

Step 3:

Rename the first mixed number if the numerators cannot be subtracted.

Step 4:

Subtract the fractions.

Step 5:

Simplify and express as a mixed number if possible.

 

Question 1: 

Subtract the following. 

\(\begin{align*} 5\frac {5} {6} - 1\frac {1} {3} \end{align*}\)

 

Solution: 

\(\begin{align*} 5\frac {5} {6} - 1\frac {1} {3} &= 4\frac { 5} { 6} - \frac {1 } {3 }\\ \\ &= 4\frac { 5} { 6} - \frac {2 } {6 }\\ \\ &= 4\frac { 3} { 6} \\ \\ &= 4\frac { 1} { 2} \\ \end{align*}\)

Answer:

\(\begin{align*} 4\frac { 1} { 2} \end{align*}\)

 

Question 2: 

Subtract the following.

\(\begin{align*} 7\frac {3} {8} - 6\frac {7} {8} \end{align*}\)

 

Solution: 

\(\begin{align*} 7\frac {3} {8} - 6\frac {7} {8} &= 1\frac { 3} { 8} - \frac {7 } {8 }\\ \\ &= \frac { 11} { 8} - \frac {7 } {8 }\\ \\ &= \frac { 4} { 8} \\ \\ &= \frac { 1} { 2} \\ \end{align*}\)

Alternatively, convert both fractions to improper fractions.

\(\begin{align*} 7\frac {3} {8} - 6\frac {7} {8} &= \frac { 59} { 8} - \frac {55} {8 }\\ \\ &= \frac { 4} { 8} \\ \\ &= \frac { 1} { 2} \\ \end{align*}\)

Answer:

\(\begin{align*} \frac {1} {2} \end{align*}\)

 

Question 3: 

Subtract the following.

\(\begin{align*} 6\frac {3} {10} - 1\frac {1} {2} \end{align*}\)

 

Solution: 

\(\begin{align*} 6\frac {3} {10} - 1\frac {1} {2} &= 5\frac { 3} { 10} - \frac {1} {2}\\ \\ &= 5\frac { 3} { 10} - \frac {5} {10} \\ \\ &= 4\frac { 13} { 10} - \frac {5} {10} \\ \\ &= 4\frac { 8} { 10} \\ \\ &= 4\frac { 4} { 5} \\ \end{align*}\)

 

Alternatively, convert both fractions to improper fractions.

\(\begin{align*} 6\frac {3} {10} - 1\frac {1} {2} &= \frac { 63} { 10} - \frac {3} {2}\\ \\ &= \frac { 63} { 10} - \frac {15} {10} \\ \\ &= \frac {48} { 10} \\ \\ &= 4\frac { 8} { 10} \\ &= 4\frac { 4} { 5} \\ \end{align*}\)

Answer:

\(\begin{align*} 4\frac { 4} { 5} \end{align*}\)

 

Question 4: 

Subtract the following.

\(\begin{align*} 5\frac {7} {10} - 3\frac {3} {4} \end{align*}\)

 

Solution: 

\(\begin{align*} 5\frac { 7 } { 10 } - 3 \frac { 3 } { 4 } &= 2 \frac { 7 } { 10 } - \frac { 3 } { 4 }\\ \\ &= 2 \frac { 14 } { 20 } - \frac { 15 } { 10 } \\ \\ &= 1 \frac { 34 } { 20 } - \frac { 15 } { 10 }\\ \\ &= 1\frac { 19 } { 20 } \\ \end{align*}\)

Answer:

\(\begin{align*} 1\frac { 19 } { 20 } \end{align*}\)

 

4. Simple Word Problems Involving Addition And/or Subtraction Of Mixed Numbers

 

Question 1: 

Jane had \(\begin{align*} 2\frac { 3 } { 5 }\; \text {kg} \end{align*}\) of coffee powder. Sarah has \(\begin{align*} 1\frac { 1 } { 5 } \; \text {kg} \end{align*}\) of coffee powder more than Jane. How much coffee powder does Sarah have?

 

Solution: 

Mass of coffee powder Sarah has \(\begin{align*} = 2 \frac { 3 } { 5 } \; \text {kg} + 1\frac { 1 } { 5 } \;\text {kg} \end{align*}\)

      \(\begin{align*} = 3 \frac { 4 } { 5 } \; \text {kg} \end{align*}\)

Answer:

\(\begin{align*} 3 \frac { 4 } { 5 } \; \text {kg} \end{align*}\)

 

Question 2: 

Mrs Tan had \(\begin{align*} 5\frac { 1 } { 2 }\; \text {kg} \end{align*}\) of flour. She had \(\begin{align*} 2\frac { 5 } { 6 }\; \text {kg} \end{align*}\) of flour more than Mrs Loh. How much flour did they have altogether?

 

Solution: 

Mass of flour Mrs Loh had \(\begin{align*} = 5\frac { 1 } { 2 }\; \text {kg} - 2\frac { 5 } { 6 }\; \text {kg} \end{align*}\)

  \(\begin{align*} &= 3\frac { 1 } { 2 }\; \text {kg} - \frac { 5 } { 6 }\; \text {kg} \\ \\ &= 3\frac { 3 } { 6 }\; \text {kg} - \frac { 5 } { 6 }\; \text {kg} \\ \\ &= 2\frac { 9 } { 6 }\; \text {kg} - \frac { 5 } { 6 }\; \text {kg} \\ \\ &= 2\frac { 4 } { 6 }\; \text {kg} \\ \\ &= 2\frac { 2 } { 3 }\; \text {kg} \\ \end{align*}\)

 

Total mass of flour they had \(\begin{align*} = 5\frac { 1 } { 2 }\; \text {kg} + 2\frac { 2 } { 3 }\; \text {kg} \end{align*}\)

     \(\begin{align*} &= 7\frac { 1 } { 2 }\; \text {kg} + \frac { 2 } { 3 }\; \text {kg} \\ \\ &= 7\frac { 3 } { 6 }\; \text {kg} + \frac { 4 } { 6 }\; \text {kg} \\ \\ &= 7\frac { 7 } { 6 }\; \text {kg} \\ \\ &= 8\frac { 1 } { 6 }\; \text {kg} \\ \end{align*}\)

Answer:

\(\begin{align*} 8\frac { 1 } { 6 }\; \text {kg} \end{align*}\)

 

Question 3:

Sandy had \(\begin{align*} 3\frac { 1 } { 2 }\; \text {kg} \end{align*}\) of sugar. She had \(\begin{align*} 2\frac { 5 } { 6 }\; \text {kg} \end{align*}\) of sugar less than Amy. How many kilograms of sugar did they have altogether?

 

Solution: 

Mass of sugar Amy had \(\begin{align*} = 3\frac { 1 } { 2 }\; \text {kg} + 2\frac { 5 } { 6 }\; \text {kg} \end{align*}\)

         \(\begin{align*} &= 5\frac { 1 } { 2 }\; \text {kg} + \frac { 5 } { 6 }\; \text {kg} \\ \\ &= 5\frac { 3 } { 6 }\; \text {kg} + \frac { 5 } { 6 }\; \text {kg} \\ \\ &= 5\frac { 8 } { 6 }\; \text {kg} \\ \\ &= 6\frac { 2 } { 6 }\; \text {kg} \\ \\ &= 6\frac { 1 } { 3 }\; \text {kg} \\ \end{align*}\)

 

Total mass of sugar Sandy and Amy had \(\begin{align*} = 3\frac { 1 } { 2 }\; \text {kg} + 6\frac { 1 } { 3 }\; \text {kg} \end{align*}\)

      \(\begin{align*} &= 9\frac { 1 } { 2 }\; \text {kg} + \frac { 1 } { 3 }\; \text {kg} \\ \\ &= 9\frac { 3 } { 6 }\; \text {kg} + \frac { 2 } { 6 }\; \text {kg} \\ \\ &= 9\frac { 5 } { 6 }\; \text {kg} \\ \\ \end{align*}\)

Answer:

\(\begin{align*} 9\frac { 5 } { 6 }\; \text {kg} \end{align*}\)

Conclusion

In this article, we have learnt about Addition and Subtraction of Fractions as per the Primary 5 Math level. We have learnt the following subtopics in fractions.

  • Relating fractions and division
  • Addition of mixed numbers 
  • Subtraction of mixed numbers 
  • Simple word problems involving addition and subtraction of mixed numbers
Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity
Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!