chevron icon chevron icon chevron icon

Percentage, Fractions And Decimals

In this article, we will learn about P5 Percentages. 

The learning objectives are: 

  1. Conversion of fraction/decimal to percentage and vice versa
  2. Solve simple word problems using percentage

Definition of Percentage

Any number written as a part out of \(100\) can be written as a percentage. It can be converted to a fraction or a decimal. The symbol for percentage is \(\%\).

Example:

\(17\) out of \(100\) expressed as a fraction is \(\displaystyle{\frac {17}{100}}\).

\(17\) out of \(100\) expressed as a decimal is \(0.17\).

\(17\) out of \(100\) expressed as a fraction is \(17\,\%\).

Hence, \(​\begin{align}17\% &= \frac{17}{100} \\[2ex] &= 0.17 ​\end{align} ​\).

 

1. Conversion of fraction/decimal to percentage and vice-versa

Conversion of fraction/decimal to percentage and vice-versa

 

Question 1: 

Express \(\displaystyle{\frac {1}{20}}\) as a percentage.

Solution:  

\(\begin{align*} \frac {1}{20}&= \frac {1}{20} \times 100\% \\[2ex] &= \frac {1}{20} \times \frac {100\%}{1} \\[2ex] &= 5\% \end{align*}\)

Answer:

\(5\% \)

 

Question 2: 

Express \(\displaystyle{\frac {3}{5}}\) as a percentage. 

Solution:  

\(\begin{align*} \frac {3}{5}&= \frac {3}{5} \times 100\% \\[2ex] &= \frac {3}{5} \times \frac {100\%}{1} \\[2ex] &= 60\% \end{align*}\)

Answer: 

\(60\%\)

 

Question 3: 

Express \(\displaystyle{1\frac {1}{5}}\) as a percentage.

Solution: 

\(\begin{align*} 1\frac {1}{5} &= \frac {6}{5}\\[2ex] &= \frac {6}{5} \times 100\% \\[2ex] &= \frac {6}{5} \times \frac {100\%}{1} \\[2ex] &= 120\% \end{align*}\)

Answer:

\(120\%\)

 

Question 4: 

Express \(\displaystyle{5\frac {3}{4}}\) as a percentage.

Solution: 

\(\begin{align*} 5\frac {3}{4} &= \frac {23}{4}\\[2ex] &= \frac {23}{4} \times 100\% \\[2ex] &= \frac {23}{4} \times \frac {100\%}{1} \\[2ex] &= 575\% \end{align*}\)

Answer: 

\(575\%\)

 

Question 5: 

Express \(1.34\) as a percentage

Solution: 

\(\begin{align*} 1.34 &= 1.34 \times 100\% \\[2ex] &= 134\% \end{align*}\)

Answer: 

\(134\%\)

 

Question 6: 

Express \(3.4\) as a percentage.

Solution: 

\(\begin{align*} 3.4 &= 3.4 \times 100\% \\[2ex] &= 340\% \end{align*}\)

Answer:

\(340\%\)

 

Something to think about

Your help is needed. Tim and Jim are in a heated argument about who scored a better grade for their spelling date. Tim scored \(\displaystyle\frac{3}{4}\) and Jim scored \(\displaystyle\frac{7}{10}\).

Who do you think scored higher?

In order to compare any two fractions, the denominator of both the fractions must be made the same. Once the denominators are the same, we compare the numerators of the two fractions.

Tim Jim
\(\displaystyle{\frac {3}{4}}\) \(\displaystyle{\frac {7}{10}}\)
\(\displaystyle{\frac {(3\;\times\;5)}{(4\;\times\;5)}}\) \(\displaystyle{\frac {(7\;\times\;2)}{(10\;\times\;2)}}\)
\(\displaystyle{\frac {15}{20}}\) \(\displaystyle{\frac {14}{20}}\)

Since, \(15\) is greater than \(14\), Tim scored higher than Jim.

We can also convert the fractions to percentages to compare.

\(\begin{align*} \frac {3} {4}&= \frac {3} {4} \times 100\% \\[2ex] &= \frac {3} {4} \times \frac {100\%} {1} \\[2ex] &= 75\% \end{align*}\)

 

\(\begin{align*} \frac {7} {10}&= \frac {7} {10} \times 100\% \\[2ex] &= \frac {7} {10} \times \frac {100\%} {1} \\[2ex] &= 70\% \end{align*}\)

After converting from fractions to percentages, Tim’s score is \(75\%\) while Jim’s score is \(70\%\)

Tim scored higher than Jim. 

 

Question 7: 

Express the following percentage as a fraction in its simplest form.

\(48\,\% = \text{__________}\)

Solution:  

\(\begin{align*} 48\,\%&= \frac {48} {100} \\[2ex] &= \frac {12} {25} \end{align*}\)

Answer:

\(\displaystyle{\frac {12} {25}}\)

 

Question 8: 

Express the following percentage as a fraction in its simplest form.

\(80\,\% = \text{ __________}\)

Solution: 

\(\begin{align*} 80\, \% &= \frac {80} {100} \\[2ex] &= \frac {4} {5} \end{align*}\)

Answer:

\(\displaystyle{\frac {4} {5}}\)

 

Question 9:

Express \(70\,\%\) as a decimal.

Solution: 

\(\begin{align*} 70\, \% &= \frac {70} {100} \\[2ex] &= 0.7 \end{align*}\)

Answer:

\(0.7\)

 

Question 10: 

Express \(550\,\%\) as a decimal.

Solution: 

\(\begin{align*} 550 \% &= \frac {550} {100} \\[2ex] &= 5.5 \end{align*}\)

Answer:

\(5.5\)

 

Question 11: 

Express \(0.2\%\) as a fraction in its simplest form.

Solution: 

\(\begin{align*} 0.2 \% &= \frac {0.2} {100} \\[2ex] &= 0.002 \\[2ex] &= \frac {2} {1000} \\[2ex] &= \frac {1} {500} \\ \end{align*}\)

Answer:

\(\displaystyle{\frac {1} {500}}\)

 

Question 12: 

Express \(0.5\%\) as a fraction in its simplest form.

Solution: 

\(\begin{align*} 0.5 \% &= \frac {0.5} {100} \\[2ex] &= 0.005 \\[2ex] &= \frac {5} {1000} \\[2ex] &= \frac {1} {200} \\ \end{align*}\)

Answer:

\(\displaystyle{\frac {1} {200}}\)

 

Question 13: 

Express \(\displaystyle{4\frac {1} {2}\%}\) as a decimal.

Solution: 

\(\begin{align*} 4 \frac {1} {2} \% &= 4\frac {5} {10}\% \\[2ex] &= 4.5\% \\[2ex] &= \frac {4.5} {100} \\[2ex] &= 0.045 \\ \end{align*}\)

Answer:

\(0.045\)

 

Question 14: 

Express \(\displaystyle1\frac{2}{5}\%\) as a decimal.

Solution: 

\(\begin{align*} 1 \frac {2} {5} \% &= 1\frac {4} {10}\% \\[2ex] &= 1.4\% \\[2ex] &= \frac {1.4} {100} \\[2ex] &= 0.014 \end{align*}\)

Answer:

\(0.014\)

 

2. Solve simple word problems using percentage

Question 1: 

In a school, the ratio of the number of boys to the number of girls is \(1:4\). What percentage of the pupils are boys?

Solution: 

\(\begin{align} \text{Number of Boys} &: \text{Number of Girls}\\[2ex] 1 &: 4 \end{align}\)

Number of boys \(= 1\) unit

Number of girls \(= 4\) units

Total number of pupils \(= 5\) units

Percentage of the pupils that are boys 

\(\displaystyle{= \frac {\text{Number of boys}}{\text{Total number of pupils}} \times 100\%}\)

\(\displaystyle{= \frac {1}{5} \times 100\%}\)

\(= 20\%\)

Answer:

\(20\%\)

 

Question 2: 

There are \(240\) pupils in Primary \(5\). \(180\) of them go to school by bus. What percentage of pupils go to school by bus?

Solution: 

Total number of pupils \(= 240\)

Number of pupils who go to school by bus \(= 180\)

Percentage of pupils who go to school by bus 

\(\displaystyle{=\frac {\text{Number of pupils who go to school by bus}}{\text{Total number of pupils}} \times 100\%}\)

\(\displaystyle{= \frac {180}{240} \times 100\%}\)

\(= 75\%\)

Answer:

\(75\%\)

 

Question 3: 

In a chicken farm, there are \(320\) hens and \(180\) roosters. \(20\%\) of hens and \(15\%\) of roosters have white feathers. What percentage of the chickens have white feathers?

Solution: 

Number of hens \(= 320\)

Number of roosters \(= 180\)
Total number of chickens\(\begin{align}\\[2ex] &= 320 + 180\\[2ex] &= 500 \end{align}\)

Number of hens with white feathers 

\(= 20\%\) of hens

\(\displaystyle{=\frac {20} {100} \times 320}\)

\(=64\)

 

Number of roosters with white feathers
\(= 15 \%\) of roosters
\(\displaystyle{= \frac{15}{100} \times 180}\)
\(= 27\)

 

Total number of chickens with white feathers 

\(= 64 + 27\)

\(= 91\)

 

Percentage of chickens with white feathers 

\(\displaystyle{=\frac {\text{Number of chickens with white feathers}}{\text{Total number of chickens}} \times 100\%}\)

\(\displaystyle{ = \frac{91}{500} \times 100\%}\)

\(\displaystyle{= 18.2\%}\)

Answer:

\(18.2\%\)

 


 

Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity

 

Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!