chevron icon chevron icon chevron icon

Angle Properties

In this article, we are going to study about Angles as per the Primary 5 Maths requirements. We will be learning about the angle properties involving lines. 

In this article, the learning objectives are:

  1. Adjacent angles on a straight line
  2. Angles at a point
  3. Vertically opposite angles

1. Adjacent Angles On A Straight Line

Adjacent angles on a straight line add up to \(180^\circ\).

\(\begin{align} \mathrm{\angle{a} + \angle{b}} = \mathrm{180^\circ} && \text{(angles on a straight line)} \end{align}\)

 

Question 1: 

\(\mathrm{AB}\) is a straight line. Find \(\mathrm{\angle{b}}\).

 

Solution: 

\(\begin{align*} \mathrm{\angle{b} + 45^\circ} &= \mathrm{180^\circ} & \text{(angles on a straight line)} \\[2ex] \mathrm{\angle{b}} &= \mathrm{180^\circ - 45^\circ}\\[2ex]   &= \mathrm{135^\circ} \end{align*}\)

Answer:

\(135^\circ\)

 

Question 2: 

The following figure is not drawn to scale. Find \(\mathrm{\angle{y}}\). 

 

Solution: 

\(\begin{align} \mathrm{\angle{y} + 88^\circ + 36^\circ} &= \mathrm{180^\circ} & \text{(angles on a straight line)} \\[2ex] \mathrm{\angle y} &= \mathrm{180^\circ - 88^\circ - 36^\circ} \\[2ex] &= \mathrm{56 ^\circ} \end{align}\)

Answer:

\(\mathrm{56^\circ}\)

 

Question 3: 

In the figure below, \(\mathrm{KLM}\) is a straight line. \(\mathrm{\angle{KLN}} = \mathrm{122^\circ}\) and \(\mathrm{\angle{JLM}} = \mathrm{105^\circ}\). Find \(\mathrm{\angle{JLN}}\)

 

Solution: 

\(\begin{align*} \mathrm{\angle{KLN} + \angle{NLM}} &= \mathrm{180^\circ}​​​​​​​ & \text{(angles on a straight line)}\\[2ex] \mathrm{122^\circ + \angle{NLM}} &= \mathrm{180^\circ} \\[2ex] \mathrm{\angle{NLM}} &= \mathrm{180^\circ - 122^\circ} \\[2ex] \mathrm{\angle{NLM}} &= \mathrm{58^\circ} \end{align*}\)

\(\begin{align*} \mathrm{\angle{JLN} + \angle{NLM}} &= \mathrm{105^\circ}\\[2ex] \mathrm{\angle{JLN} + 58^\circ} &= \mathrm{105^\circ}\\[2ex] \mathrm{​​​​​​​\angle{JLN}} &= \mathrm{105^\circ - 58^\circ}\\[2ex] \mathrm{\angle{JLN}} &= \mathrm{47^\circ} \end{align*}\)

Answer: 

\(\mathrm{47^\circ}\)

 

OR

\(\begin{align*} ∠JLM + ∠JLK &= 180º \;\;\;\;\;(angles \;on \;a \;straight \;line)\\ 105º + ∠JLK &= 180º\\ ∠JLK &= 180º - 105º\\ ∠JLK &= 75º\\ \end{align*} \)

\(\begin{align*} ∠JLK + ∠JLN &= 122º\\ 75º + ∠JLN &= 122º\\ ∠JLN &= 122º − 75º \\ &= 47º\\ \end {align*}\)

Answer: 

\(47º\)

2. Angles At A Point

Angles at a point add to \(360º\)

\(∠a + ∠b + ∠c = 360º\)     (angles at a point)

 

Question 1: 

Find \(∠c\).

 

 

Solution: 

\(\begin{align*} 140º + 60º + ∠c &= 360º \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(angles \;at \;a \;point)\\ ∠c &= 360º - 140º - 60º \\      &= 160º \\ \end{align*}\)

Answer:

\(160º\)

 

Question 2: 

Find the sum of \(∠d\) and \(∠e\).

 

 

Solution: 

\(\begin{align*} 75º + 75º + ∠d + ∠e &= 360º \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(angles \;at \;a \;point)\\ ∠d + ∠e &= 360º - 75º - 75º \\ &= 210º \end{align*}\)

Answer:

\(210º\)

 

Question 3: 

The following figure is not drawn to scale. Find \(∠z\)

 

 

Solution: 

\(\begin{align*} ∠z + 86º + 81º + 90º &= 360º \;\;\;\;\;\;\;\;\;(angles \;at \;a \;point) \\ ​​​​​​​∠z &= 360º - 90º - 86º - 81º \\ ∠z &= 103º \\ \end{align*}\)

Answer:

\(103º\)

3. Vertically Opposite Angles

When two straight lines intersect, the opposite angles are equal. The point where they meet is called the vertex.

\(∠a = ∠c\)     (vertically opposite angles)

\(∠b = ∠d\)     (vertically opposite angles)

 

Question 1:   

\(AB\) and \(CD\) are straight lines. Name the 2 pairs of angles that are equal.

 

 

Solution: 

\(∠a\) and \(∠c\) are vertically opposite angles. 

\(∠b\) and \(∠d\) are also vertically opposite angles.

As per the properties of vertically opposite angles,

\(∠a = ∠c\) and \(∠b = ∠d\)

Answer:

 \(∠a = ∠c\) and \(∠b = ∠d\)

 

Question 2: 

\(AB\) and \(CD\) are straight lines. Find \(∠b\). 

 

 

Solution: 

\(AB\) and \(CD\) are two straight lines that meet. 

\(∠b = 35º\)     (vertically opposite angles)

Answer:

35º

 

Question 3: 

In the figure below, \(AB\) and \(CD\) are straight lines. \(∠AOC = 25º\)

  1. Find \(∠BOE\).
  2. Find \(∠AOD\).

 

 

Solution: 

(a)

\(AB\) is a straight line.

\(\begin{align*} ∠AOC + ∠COE + ∠BOE &= 180º \;\;\;\;\;\;\;\;\;(angles \;on \;a \;straight \;line)\\ ∠BOE &= 180º - 25º - 90º\\ &= 65º\\ \end{align*}\)

 

(b)

\(AB\) and \(CD\) are two straight lines that intersect. 

\(\begin{align*} ∠AOD &= ∠BOC \;\;\;\;\;\;\;\;\;(vertically \;opposite \;angles) \\ ∠AOD &= 90º + 25º \\ &= 115º \\ \end{align*}\)

Answer:

(a) \(65º\)

(b) \(115º\)

 

Question 4: 

The figure below is not drawn to scale. \(AD\) and \(BC\) are straight lines. The ratio of \(∠a\) to \(∠b\) is \(3 : 2\). Find the difference between \(∠a\) and \(∠c\)

 

 

Solution: 

\(BC\) is a straight line.

\(\begin{align*} ∠c + ∠AOC &= 180º \;\;\;\;\;\;\;(angles \;on \;a \;straight \;line)\\ ∠c &= 180º - 155º \\ &= 25º \\ \end{align*}\)

 

\(AD\) and \(BC\) are two straight lines that meet. 

\(\begin{align*} ∠a + ∠b &= 155º \;\;\;\;\;\;\;(vertically \;opposite \;angles)\\\\ ∠a : ∠b &= 3 : 2 \\ \\ 5 \;units &= 155º \\ 1 \;unit &= 155º \div5 \\ &= 31º \\ \\ ∠a &= 3 \;units \\ &= 3 × 31º \\ &= 93º \\ \\ ∠b &= 2 \;units \\ &= 2 × 31º \\ &= 62º \\ \end{align*}\)

 

Difference between \(∠a\) and \(∠c\)

\(\begin{align*} &= 93º - 25º \\ &= 68º \\ \end{align*} \)

Answer:

\(68º\)

Conclusion

In this article, we learned about the different types of angles and their properties. 

  • Properties of angles involving lines

Angles On A Straight Line

Angles At A Point

Vertically Opposite Angles

\(∠a + ∠b = 180º\)

\(∠a + ∠b + ∠c = 360º\)

\(∠a = ∠c\\ ∠b = ∠d\)
 

 

Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity
Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!