chevron icon chevron icon chevron icon

Distance, Speed And Time

In this article, we will be learning about various aspects of speed, distance and time according to the P6 mathematics syllabus. 

What Is Speed? 

It is the distance that we cover in one unit of time. It refers to how fast we travel. Generally, we use ‘kilometre', ‘metre’ or ‘centimetre’ for distance and ‘hour’ or ‘minute’ or ‘second’ for time. 

Why do we need to find speed? 

Speed is essential so that we can plan our journey. If we know how much time it will take for us to reach a certain place, then we can plan what time we need to leave home to be able to reach that place.

Finding speed

To find the speed of a moving object, we take the distance travelled by the object and divide it by the time it has taken to cover that distance. Thus, the formula for speed is:

\(\bbox[5px, border:2px solid #262262] { \mathrm{Speed = Distance \div Time} }\)

Let us see some examples to understand the concept.

Practice Problems

Question 1: 

A car travels \(\text{60 km}\) in \(\text{30 minutes}\). What is the speed of the car? 

 

Solution: 

Distance covered by the car \(=  \text{60 km}\) 

Time taken to cover the distance \(= \text{30 min}\)

Speed of the car\(\begin{align} &= \text{Distance} \div \text{Time}\\[2ex] &=60 \text{ km} \div 30 \text{ min}\\[2ex] &= 2 \text{ km/min} \end{align} ​ ​\)

Answer : 

\(2 \text{ km/min}\)


 

Question 2: 

Arun ran a marathon of \(\text{2 km}\) in \(\text{10 minutes}\). What is his speed? 

Leave your answer in \(\text{km/h}\).  

 

Solution: 

Distance covered \(= \mathrm{2 \;km}\)

Time taken\(\begin{aligned} &= \mathrm{10 \;min}\\[2ex] &= \mathrm{10 \div 60\;h}\\[2ex] &= \mathrm{\frac {1}{6}h} \end{aligned}\)

Speed\(​\begin{align} &= \text{Distance} \div  \text{Time}\\[2ex] &= \mathrm{2\;km \div \frac{1}{6}h} \\[2ex] &= \mathrm{(2 \times 6)\;km/h} \\[2ex] &= \mathrm{12 \;km/h} \end{align} ​\)

Answer : 

\(\text{12 km/h}\)


 

Question 3: 

John ran a distance of \(15 \;km\) in \(15 \;min\). Find his speed in \(km/h\).

 

Solution:  

Distance covered (d) \(= 15 \;km\) 

Time taken (t) \( =15 \;min\)

Since the speed has to be in \(km/h\), we will first convert the time taken into hours.

\(\begin{align}​ 15 \text{ min} &=15 \div 60 \text{ h} \\[2ex] &=\frac{1}{4}\text{ h}​ \end{align}\)

\(​\begin{align} \text{Speed} &= \text{Distance} \div  \text{Time}\\ &= 15\;km \div \frac{1}{4}h \\ &= (15 \times 4)\;km/h \\ &= 60 \;km/h \end{align} ​\)

Answer:

\(60 \;km/h\)


 

Question 4:

Carla started from her home in Town A at \(6.10 \;pm\) and reached her grandparents' home in Town B at \(9.10 \;am\) the next day. The distance between Town A and Town B is \(1200 \;km\). Find the speed at which Carla travelled to reach her destination. 

 

Solution:  

Distance between Town A and Town B \(= 1200\;km\) 

Time taken to cover the distance \(=\;?\)

Let us calculate the time taken to travel from Town A to Town B. 

From \(6.10 \;pm\) to \(6.10 \;am\) \(= 12 \;h\)

From \(6.10 \;am\) to \(9.10 \;am\) \(= 3 \;h\)

Total time taken \(= 12 \;h + 3 \;h \) 

                              \(=15 \;h\)

\(\begin{align}​ ​ \text{Speed} &= \text{Distance} \div  \text{Time} ​\\ &=1200 \;km \div 15 \;h \\ &=80 \;km/h \end{align}\)

Answer : 

\(80 \;km/h\)


 

Question 5:

Bob ran \(5 \;km\) in \(30 \;minutes\). Calculate his speed in \(km/h\).

 

Solution:

Distance covered (d) \(= 5\;km\)

Time taken (t) \(=30\;min\)

Since the speed has to be in \(km/h\), we will first convert the time taken into hours.

\(\begin{align}​​ 30 \;min &=30 ÷ 60 \;h\\ &=\frac{1}{2}h​ \end{align} \)

\(\begin{align}​ ​ \text{Speed} &= \text{Distance} \div  \text{Time} ​\\ &=5 \;km \div \frac{1}{2} \;h \\ &= (5 \times2) \;km/h \\ &= 10 \;km/h \end{align}\)

Answer:

\(10 \;km/h\)


 

Finding Time

We know that speed is the distance covered per unit of time.

To find the time taken to cover a particular distance, we take the distance covered by the object divided by the speed of the object,

\(\bbox[5px, border:2px solid #262262] { \text{Time}= \text{Distance} \div \text{Speed} }\)

Let us try to better understand this concept using some examples.

Practice Problems

Question 1: 

Ram is running at the speed of \(200 \;m/min\). How long will he take to cover a distance of \(1000 \;m\)?

 

Solution: 

Speed (s) \(=  200 \;m/min\)

Distance (d) \(=  1000 \;m\)

Time (t) \(= \;?\)

\(\begin{align}​​ \text{Time} &= \text{Distance} \div \text{Speed} \\ &= 1000\;m \div 200 \;m/min \\ &= 5 \;min \end{align}\)

Answer:

\(5 \;min\)


 

Question 2: 

A train is travelling at a speed of \(100 \;km/h\). How long will it take to cover a distance of \(325 \;km\)?

 

Solution:

Speed (s) \(= 100 \;km/h\)

Distance (d) \(= 325 \;km\)

Time (t) \(= \;?\) 

\(\begin{align}​​ \textstyle \text{Time} &= \text{Distance} \div \text{Speed} \\ &= 325\;km \div 100 \;km/h \\ &= 3.25 \;h \end{align}\)

Answer: 

\(3.25 \;h\)


 

Question 3: 

A train is travelling at a speed of \(100 \;km/h\). How long will it take to cover a distance of \(425 \;km\)?

 

Solution :

Speed (s) \(= 100 \;km/h\)

Distance (d) \(= 425 \;km\)

Time (t) \(= \;?\)

\(\begin{align}​​ \textstyle \text{Time} &= \text{Distance} \div \text{Speed} \\ &= 425\;km \div 100 \;km/h \\ &= 4.25 \;h \end{align}\)

Answer:

\(4.25 \;h\)


 

Question 4:

Tom took a bus from Town A to Town B. The bus travelled at a speed of \(\text{60 km/h}\). The distance between the two towns is \(\text{300 km}\). He arrived at Town B at \(\text{3 pm}\). At what time did he leave Town A?

 

Solution:

Speed (s) \(= \text{60 km/h}\)

Distance (d) \(= \text{300 km}\)

\(\begin{align}​​ \textstyle \text{Time} &= \text{Distance} \div \text{Speed} \\ &= \text{300 km} \div \text{60 km/h} \\ &= \text{5 h } \end{align}\)

Time Graph 2

He left Town A at \(\text{10 am}\)

Answer:

\(\text{10 am}\)


 

Question 5:

Krishna drove from Town A to Town B at a speed of \(\text{50 km/h}\). The distance between the two towns was \(\text{500 000 m}\). He arrived at Town B at \(\text{3 pm}\). At what time did he leave Town A?

 

Solution:

Speed (s) \(= 50 \;km/h\) 

Distance (d) \(= 500\,000 \;m\)

Since the speed and distance are in different units, we will first convert the distance from metres to kilometres.

We know, 

\(\begin{aligned}​​ \text{1000 m} &= \text{1 km} \\[2ex] \text{500 000 m} &= \text{(500 000} \div \text{1000) km} \\[2ex] &= \text{500 km​} \end{aligned}\)

\(\begin{align}​​ \textstyle \text{Time} &= \text{Distance} \div \text{Speed} \\ &= 500\;km \div 50 \;km/h \\ &= 10 \;h \end{align}\)

In the question, it is given that Krishna reached his destination Town B at \(3 \;pm\). From the above, we see that the time taken by him to go from Town A to Town B is \(10 \;h\). Thus, Krishna must leave Town A \(10 \;h\) before \(3 \;pm\)

Time Graph

He left Town A at \(5 \;am\)

Answer:

\(5 \;am\)


 

Finding Distance

To find the distance travelled, we multiply the speed of the object and the time taken, so equation or formula of distance is

\(\bbox[5px, border:2px solid #262262] { \text{Distance}= \text{Speed} \times \text{Time} }\)

Practice Problems

Question 1:

A car, travelling at \(60 \;km/h\) took \(3 \;h\) to travel from Town X to Town Y. What is the distance between Town X and Town Y?

 

Solution:

Speed (s) \(=60 \;km/h\)

Time (t) \(=3\;h\)

\(\begin{align}​​ \text{Distance} &= \text{Speed} \times \text{Time} \\ &= 60\;km/h \times 3\;h \\ &= 180\;km \end{align} \)

The distance between Town X and Town Y is \(180 \;km\).

Answer: 

\(180 \;km\)


 

Question 2: 

A bus travelling at \(60 \;km/h\) took \(3.5 \;h\) to travel from Town A to Town B. What is the distance between Town A and Town B?

 

Solution:

Speed (s) \(=60 \;km/h\)

Time (t) \(=3.5\;h\)

\(\begin{align}​​ \text{Distance} &= \text{Speed} \times \text{Time} \\ &= 60\;km/h \times 3.5\;h \\ &= 210\;km \end{align} \)

The distance between Town A and Town B is \(210 \;km\).

Answer:

\(210 \;km\)


 

Conclusion

In this lesson, we learnt how to find the distance, speed and time.

Let us recap the formulae.

  • Speed is the distance covered per unit of time.
  • Speed \(=\) Distance ÷ Time
  • Time \(=\) Distance ÷ Speed
  • Distance \(=\) Speed × Time


 

Continue Learning
Algebra Distance, Speed and Time
Volume of Cubes and Cuboid Fundamentals Of Pie Chart
Finding Unknown Angles Number Patterns: Grouping & Common Difference
Fractions Of Remainder Fractions - Division
Ratio Repeated Identity: Ratio Strategies

 

Kiểm tra kiến thức

Câu hỏi 1/5

A car travels at 20 m per second. How many kilometers does it travel in 40 minutes?

A. 

30 km

B. 

4.8 km

C. 

48 km

D. 

480 km

Giải thích

Ans: (3) 48 km

Câu hỏi 2/5

Ellen jogs 4 km in 20 min. Alex's average speed is 2 km/h slower than Ellen's. What is Alex's average speed?

A. 

14 km/h

B. 

10 km/h

C. 

3 km/h

D. 

5 km/h

Giải thích

Ans: (2) 10 km/h

Câu hỏi 3/5

Stella cycled 7 km in 35 minutes. What was her cycling speed in km/h?

A. 

5

B. 

12

C. 

200

D. 

245

Giải thích

Ans: (2) 12

Câu hỏi 4/5

A taxi drove at an average speed of 75 km/h. How long would the driver need to cover a distance of 225 km?

A. 

\(\frac{1}{3}\) h

B. 

1 h

C. 

3 h

D. 

\(3\frac{1}{3}\) h

Giải thích

Ans:(3) 3 h

Câu hỏi 5/5

Mr Gavin travelled \(\frac{3}{5}\) of his journey in 40 minutes. He travelled the remaining 80 km in \(1\frac{1}{3}\) h. Find his average speed for the whole journey.

A. 

40 km/h

B. 

60 km/h

C. 

100 km/h

D. 

200 km/h

Giải thích

Ans: (3) 100 km/h

Trang trước
Trang kế
Trang trước
Trang kế
Nhận bài đánh giá năng lực miễn phí!
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Gần được rồi!
 
Arrow Down Arrow Down
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Geniebook đã nhận được yêu cầu của bạn!
Chuyên viên tư vấn Geniebook sẽ liên hệ với ba mẹ trong vòng 24h.
*Bằng việc cung cấp số điện thoại, chúng tôi đã được sự đồng ý của bạn để liên hệ tư vấn. Xem thêm Chính sách bảo mật.
Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!