chevron icon chevron icon chevron icon

Model Drawing Strategy

In this article, the lesson objectives are: 

  • Drawing models to help us solve word problems involving increase in the subject(s)

Model drawing strategy is a useful skill which is used to understand complex word problems visually.

 

Question 1: 

Timmy had 128 fewer stickers than Chloe. After Chloe bought another 132 stickers, she had thrice as many stickers as Timmy. How many stickers did Chloe have at first?

Solution:

model drawing strategy word problem 1

Difference between Chloe and Timmy’s stickers in the end

\(\begin{align}​​ &= 128 + 132\\[2ex] &= 260 \end{align}\)

 

\(\begin{align}​​ 2 \text{ units} &= 260 \\[2ex] 1 \text{ units} &= 260 \div 2\\[2ex] &= 130 \end{align}\)

 

Number of stickers Chloe had at first

\(\begin{align}​​ &= 1 \text{ unit} + 128\\[2ex] &= 130 + 128\\[2ex] &= 258 \end{align}\)

Answer:

258 stickers

 

Question 2: 

Phoebe had 812 more stamps than Rachel at first. After Phoebe bought 804 more stamps, she had 5 times as many stamps as Rachel.

  1. How many stamps did Rachel have? 
  2. How many stamps would Rachel need to buy in order to have twice as many stamps as Phoebe in the end?

Solution:

A.

model drawing strategy word problem 2

Difference between Phoebe and Rachel’s stamps in the end

\(\begin{align}​​ &= 812 + 804\\[2ex] &= 1616 \end{align}\)

 

\(\begin{align}​​ 4 \text{ units} &= 1616 \\[2ex] 1 \text{ units} &= 1616 \div 4\\[2ex] &= 404 \end{align}\)

 

Number of stamps Rachel had

\(\begin{align}​​ &=1 \text{ units} \\[2ex] &= 404 \end{align}\)

Answer:

404 stamps

 

B.

In order for Rachel to have twice as many stamps as Phoebe in the end, 

Number of units Rachel must have in the end

\(\begin{align}​​ &=2 \times 5 \text{ units} \\[2ex] &= 10 \text{ units} \end{align}\)

 

Number of stamps Rachel needs to buy

\(\begin{align}​​ &= 10 \text{ units }  – 1 \text{ units} \\[2ex] &= 9 \text{ units} \\[2ex] &= 9 \times 404\\[2ex] &= 3636 \end{align}\)

Answer:

3636 stamps

 

Question 3: 

Julian and Ken had some stickers at first. After Julian bought 24 more stickers, Ken's stickers became 4 times that of Julian's stickers. The total number of stickers Julian and Ken had in the end was 405. How many stickers did Julian have at first?

Solution:

model drawing strategy word problem 3

\(\begin{align}​​ 5 \text{ units} &= 405 \\[2ex] 1 \text{ units} &= 405 \div 5\\[2ex] &= 81 \end{align}\)

 

Number of stickers Julian had at first

\(\begin{align}​​ &= 1 \text{ units } – 24\\[2ex] &= 81 – 24\\[2ex] &= 57 \end{align}\)

Answer:

57 stickers 

 

Question 4: 

Maddy had \$24 more than Han at first. After Han received \$284, Han had thrice as much as Maddy. Find the total amount of money they had in the end.

Solution: 

model drawing strategy word problem 4

Difference between Maddy and Han’s money in the end

\(\begin{align}​​ &= $284 – $24\\[2ex] &= $230 \end{align}\)

 

\(\begin{align}​​ 2 \text{ units} &= $230 \\[2ex] 1 \text{ units} &= $230 \div 2\\[2ex] &= $115 \end{align}\)

 

Total amount of money they had in the end

\(\begin{align}​​ &= 3 \text{ units} + 1 \text{ unit} \\[2ex] &= 4 \text{ units} \\[2ex] &= 4 \times $115\\[2ex] &= $460 \end{align}\)

Answer:

$460 

 

Question 5: 

Jason had \$230 less than Doris. After Jason received \$1500 from his mother, he had 3 times as much money as Doris. How much did both of them have in total at first?

Solution: 

model drawing strategy word problem 5

Difference between Jason’s and Doris’s money in the end

\(\begin{align}​​ &= $1500 \;–\; $230\\[2ex] &= $1270 \end{align}\)

 

\(\begin{align}​​ 2 \text{ units} &= $1270 \\[2ex] 1 \text{ units} &= $1270 \div 2\\[2ex] &= $635 \end{align}\)

 

Total number of stickers both of them had at first

\(\begin{align}​​ &= 1 \text{ unit} + 1 \text{ unit} \;–\; $230 \\[2ex] &= $635 \;+\; $635 \;–\; $230 \\[2ex] &= $1040 \end{align}\)

Answer:

$1040

 


 

Continue Learning
Multiplication Whole Numbers
Multiplication And Division Decimals
Model Drawing Strategy Division
Fractions Factors And Multiples
Area And Perimeter 1 Line Graphs
Conversion Of Time  

 

Chương Trình
icon expand icon collapse Tiểu học
icon expand icon collapse
Đăng ký tư vấn ngay!
Đội ngũ Cố vấn giáo dục Geniebook sẽ liên hệ tư vấn đến ba mẹ ngay khi nhận được thông tin.
Đăng ký tư vấn ngay!
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook - Mở ra cơ hội học tập toàn cầu
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Geniebook - Mở ra cơ hội học tập toàn cầu
Đăng ký kiểm tra trình độ miễn phí ngay!
 
 
 
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!
Chúng tôi đã nhận được yêu cầu của bạn!
Tư vấn viên sẽ liên hệ với bạn trong vài ngày tới để sắp xếp cho buổi demo!
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
icon close
Default Wrong Input
Truy cập vào kho tài liệu của Geniebook
Bắt đầu hành trình học tập của bạn.
No Error
arrow down arrow down
No Error
Với việc cung cấp số điện thoại, bạn đã đồng ý cho Geniebook liên hệ tư vấn. Tham khảo thêm Chính sách bảo mật.
Success
Bắt đầu học thôi!
Tải tài liệu học tập ngay.
icon close
Error
Xin lỗi
Oops! Có lỗi xảy ra rồi. Vui lòng tải lại trang!