chevron icon chevron icon chevron icon

Fractions: Improper Fractions & Mixed Numbers

Fractions are parts of a whole, for instance, \(\begin{align*} \frac{1} {2} \end{align*}\). The three types of fractions are proper fractions, improper fractions and mixed numbers. A fraction is denoted as \(\begin{align*} \frac{x} {y} \end{align*}\), where \(x \) is the numerator and \(y\) is the denominator.

In this article, the lesson objectives are: 

  1. Understanding improper fractions and mixed numbers
  2. Express improper fractions as mixed numbers
  3. Express mixed numbers as improper fractions

Watch our video lesson!

1. Understanding Improper Fractions And Mixed Numbers

  • An improper fraction has a value equal to or greater than \(1\)
  • The numerator is equal to or greater than the denominator.
  • \(\begin{align*} \frac{4} {4} \end{align*} \), \(\begin{align*} \frac{5} {4} \end{align*}\) and \(\begin{align*} \frac{10} {3} \end{align*}\) are examples of  improper fractions.
  • A mixed number is made up of a whole number and a fraction.
  • \(\begin{align*} 3\frac{1} {4} \end{align*}\), \(\begin{align*} 1\frac{5} {7} \end{align*}\) and \(\begin{align*} 20\frac{2} {9} \end{align*}\) are examples of mixed numbers.
  • An improper fraction can be expressed as a mixed number. 

Example:

\(\begin{align*} \frac{23} {4} \end{align*}\) is an improper fraction.

\(\begin{align*} 5\frac{3} {4} \end{align*}\) is a mixed number.

 

Question 1: 

Which of the following is an improper fraction?

 

  1. \(\begin{align*} \frac{3} {4} \\ \end{align*}\)
  2. \(\begin{align*} \frac{7} {8} \end{align*}\)
  3. \(\begin{align*} \frac{5} {4} \end{align*}\)
  4. \(\begin{align*} 5\frac{1} {5} \end{align*}\)

Answer:

(3) \(\begin{align*} \frac{5} {4} \end{align*}\)

 

Question 2: 

Which of the following is not an improper fraction?​​​

  1. \(\begin{align*} \frac{8} {7} \end{align*}\)
  2. \(\begin{align*} \frac{15} {3} \end{align*}\)
  3. \(\begin{align*} \frac{9} {9} \end{align*}\)
  4. \(\begin{align*} \frac{7} {10} \end{align*}\)

Answer:

(4) \(\begin{align*} \frac{7} {10} \end{align*}\)

 

Question 3: 

Which of the following is a mixed number?

  1. \(\begin{align*} \frac{9} {7} \end{align*}\)
  2. \(\begin{align*} 3\frac{6} {13} \end{align*}\)
  3. \(\begin{align*} \frac{8} {8} \end{align*}\)
  4. \(\begin{align*} \frac{1} {10} \end{align*}\)

Answer:

(2) \(\begin{align*} 3\frac{6} {13} \end{align*}\)

 

Question 4: 

What mixed number does the following represent?

  1. \(\begin{align*} \frac{9} {4} \end{align*}\)
  2. \(\begin{align*} \frac{63} {4} \end{align*}\)
  3. \(\begin{align*} 6\frac{3} {4} \end{align*}\)
  4. \(\begin{align*} 7\frac{3} {4} \end{align*}\)

Solution:

Answer:

(3) \(\begin{align*} 6\frac{3} {4} \end{align*}\)

 

Question 5:

What improper fraction does the following represent? 

Solution: 

\(\begin{align*} \frac{8} {8}+\frac{8} {8}+\frac{5} {8} = \frac{21} {8} \end{align*}\)

Answer: 

\(\begin{align*} \frac{21} {8} \end{align*}\)

 

2. Express Improper Fractions As Mixed Numbers

There are 2 methods to express improper fractions as mixed numbers:

  1. Expressing to the greatest possible number of wholes
  2. Long Division

 

Question 1: 

How many sevenths are there in 8 wholes? 

Solution:

\(\begin{align*} ​1 \;\text{whole} &= \frac {7}{7} \\ \\ & = 7 \;\text{sevenths} \\ \\ \\ ​ 8 \;\text{wholes} &= \frac {56}{7} \\ \\ &= 56 \;\text{sevenths} ​ \end{align*}\)

Answer:

\(56\)

 

Question 2: 

How many fifths are there in 3 wholes? 

Solution:

\(\begin{align*} ​1 \;\text{whole} &= \frac {5}{5} \\ \\ & = 5 \;\text{fifths} \\ \\ \\ ​ 3 \;\text{wholes} &= \frac {15}{5} \\ \\ &= 15 \;\text{fifths} ​ \end{align*}\)

Answer:

\(15\)

 

Question 3: 

Express \(\begin{align*} \frac{28} {5} \end{align*}\) as a mixed number.

Solution: 

\(\begin{align*} \frac{28} {5} &=\frac{25} {5} +\frac{3} {5} \\ \\ &= 5+\frac{3} {5} \\ \\ &= 5\frac{3} {5} \end{align*}\)

or

Answer:

\(\begin{align*} 5\frac{3} {5} \end{align*}\)

 

Question 4: 

Express \(\begin{align*} \frac{26} {3} \end{align*} \) as a mixed number.

Solution: 

\(\begin{align*} \frac{26} {3} &=\frac{24} {3} +\frac{2} {3} \\ \\ &= 8+\frac{2} {3} \\ \\ &= 8\frac{2} {3} \end{align*}\)

or

     

Answer:

\(\begin{align*} 8\frac{2} {3} \end{align*}\)

 

Question 5: 

Convert \(\begin{align*} \frac{19} {3} \end{align*} \) to a mixed number.

Solution: 

\(\begin{align*} \frac{19} {3} &=\frac{18} {3} +\frac{1} {3} \\ \\ &= 6+\frac{1} {3} \\ \\ &= 6\frac{1} {3} \end{align*}\)

or

Answer:

\(\begin{align*} 6\frac{1} {3} \end{align*}\)

 

Question 6: 

Convert \(\begin{align*} \frac{26} {5} \end{align*}\) to a mixed number.

Solution: 

\(\begin{align*} \frac{26} {5} &=\frac{25} {5} +\frac{1} {5} \\ \\ &= 5+\frac{1} {5} \\ \\ &= 5\frac{1} {5} \end{align*}\)

or

Answer:

\(\begin{align*} 5\frac{1} {5} \end{align*}\)

 

3. Express Mixed Numbers As Improper Fractions

We can express mixed numbers as improper fractions by expressing the wholes as improper fractions and then adding the remaining fraction.

Example:

\(\begin{align*} 3\frac{2} {5} &=3 +\frac{2} {5} \\ \\ &= \frac{15} {5}+\frac{2} {5} \\ \\ &= \frac{17} {5} \end{align*}\)

The short-cut method is as shown.

 

Question 1: 

Convert \(\begin{align*} 8\frac{3} {8} \end{align*}\) to an improper fraction. 

  1. \(\begin{align*} \frac{8} {67} \end{align*}\)
  2. \(\begin{align*} \frac{24} {8} \end{align*}\)
  3. \(\begin{align*} \frac{67} {8} \end{align*}\)
  4. \(\begin{align*} \frac{83} {8} \end{align*}\)

Solution: 

\(\begin{align*} 8\frac{3} {8} &=8 +\frac{3} {8} \\ \\ &= \frac{64} {8}+\frac{3} {8} \\ \\ &= \frac{67} {8} \end{align*}\)

The short-cut method is as shown.

Answer:

(3) \(\begin{align*} \frac{67} {8} \end{align*}\)

 

Question 2: 

Convert \(\begin{align*} 6\frac{4} {7} \end{align*}\) to an improper fraction.

Solution: 

\(\begin{align*} 6\frac{4} {7} &=6 +\frac{4} {7} \\ \\ &= \frac{42} {7}+\frac{4} {7} \\ \\ &= \frac{46} {7} \end{align*}\)

The short-cut method is as shown.

Answer:

\(\begin{align*} \frac{46} {7} \end{align*}\)

 

Question 3: 

Convert \(\begin{align*} 13\frac{1} {6} \end{align*}\) to an improper fraction. 

Solution: 

\(\begin{align*} 13\frac{1} {6} &=13 +\frac{1} {6} \\ \\ &= \frac{79} {6} \end{align*}\)

The short-cut method is as shown.

Answer:

 \(\begin{align*} \frac{79} {6} \end{align*}\)

 

Question 4: 

How many thirds are there in \(\begin{align*} 2\frac{1} {3} \end{align*}\)?

  1. \(\begin{align*} \frac{21} {3} \end{align*}\)
  2. \(\begin{align*} \frac{7} {3} \end{align*}\)
  3. \(\begin{align*} 21 \end{align*}\)
  4. \(\begin{align*} 7 \end{align*}\)

Solution: 

Express the mixed number as an improper fraction with denominator 3.

\(\begin{align*} 2\frac{1} {3} &=2 +\frac{1} {3} \\ \\ &= \frac{6} {3}+\frac{1} {3} \\ \\ &= \frac{7} {3} \\ \\ &= 7 \;\text{third} \end{align*}\)

The short-cut method is as shown.

Answer:

(4) \(7\)

 

Question 5: 

How many halves are there in \(\begin{align*} 5\frac{1} {2} \end{align*}\)?

 

Solution: 

Express the mixed number as an improper fraction with denominator \(2\).

\(\begin{align*} 5\frac{1} {2} &=5 +\frac{1} {2} \\ \\ &= \frac{10} {2}+\frac{1} {2} \\ \\ &= \frac{11} {2} \\ \\ &= 11 \;\text{halves} \end{align*}\)

The short-cut method is as shown.

Answer:

\(\begin{align*} 11 \end{align*}\)

 

Question 6: 

How many eighths are there in \(\begin{align*} 6\frac{3} {4} \end{align*}\)?

Solution:

Express the mixed number to an improper fraction with denominator \(\begin{align*} 8 \end{align*}\).

\(\begin{align*} 6\frac{3} {4} &= \frac{27} {4} \\ \\ &= \frac{54} {8} \\ \\ &= 54 \; \text{eights} \end{align*}\)

The short-cut method is as shown.

Answer:

\(\begin{align*} 54 \end{align*}\)

Continue Learning
Multiplication Whole Numbers
Multiplication And Division Decimals
Model Drawing Strategy Division
Fractions Factors And Multiples
Area And Perimeter 1 Line Graphs
Conversion Of Time  
Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
Claim your free demo today!
Claim your free demo today!
Arrow Down Arrow Down
Arrow Down Arrow Down
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Get a free diagnostic report of your child’s strengths & weaknesses!
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
1 in 2 Geniebook students scored AL 1 to AL 3 for PSLE
Trusted by over 220,000 students.
Trusted by over 220,000 students.
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
media logo
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration Geniebook CTA Illustration
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!