chevron icon chevron icon chevron icon chevron icon

Differentiation Of Exponential And Logarithmic Functions

In this article, we will learn about Differentiation of Exponential and Logarithmic Functions. The article is written as per the requirements of students of Secondary 4 A Maths grade. In this topic, we will learn about:

  • Derivative of \(e^x\)
  • Derivative of \(e^{f(x)}\)
  • Derivative of \(log \;x\)
  • Derivative of \(log \;f(x)\)

Differentiating \(e^x\)

When you differentiate the most basic exponential function, \(e^x\), you get \(e^x\).

\(\begin{align*} \frac {d} {dx}e^x = e^x \end{align*}\)

Here, \(e\) is 2.718. This number is calculated in such a way, so that \(\begin{align*} \frac {d} {dx}\;(e^x) = e^x \end{align*}\) is obtained.

Example 1:

Differentiate each of the following with respect to \(x\).

  1. \(\begin{align*} 2xe^x \end{align*}\)
  2. \(\begin{align*} e^x \; cos^2(2x) \end{align*}\), where \(x\) is in radians.
  3. \(\begin{align*} \frac {e^x-1 } {e^x+1 } \end{align*}\)

Solution: 

  1. When we differentiate, we keep the first term and differentiate the second term. We add to the second term and differentiate it too.

We will solve it by the product rule.

\(\begin{align*} \frac {d} {dx} (2xe^x) &= 2x\frac {d} {dx} (e^x) + e^x\frac {d} {dx} (2x) \\ \\ &= 2xe^x + 2e^x \\ \\ &= 2e^x(x+1) \end{align*}\)

  1. We will solve it by the product rule. 

\(\begin{align*} \frac {d} {dx} [cos^2(2x)] &= e^x\frac {d} {dx} [cos\;(2x)]^2 + cos^22x \frac{d}{dx}(e^x) \\ \\ &= e^x[2(cos\;2x)^1(-sin\;2x)(2)]+e^xcos^22x \\ \\ &= -4e^x\;sin\;2xcos\;2x\; +\; e^xcos^22x \end{align*}\)

 

  1. We will use the quotient rule to solve the problem. 

\(\begin{align*} \frac{d}{dx}\big[\;\frac {e^x\;-\;1 } {e^x\;+\;1 }\;\big] &= \frac {(e^x+1)\;\frac {d}{dx}(e^x-1)-(e^x-1)\;\frac{d}{dx}(e^x+1)} {(e^x+1)^2} \\ \\ &=\frac {(e^x+1)(e^x)-(e^x-1)(e^x)} {(e^x+1)^2} \\ \\ &= \frac {e^x(e^x+1-e^x+1)} {(e^x+1)^2} \\ \\ &= \frac {2e^x} {(e^x+1)^2} \end{align*} \)

Chain Rule On Exponential Functions

In a chain rule, if an exponent has an outer function and an inner function, the outer function must be differentiated and multiplied by the derivative of the inner function.

\(\begin{align*} &1.\; \frac {d}{dx} [e^{(f(x)}] = e^{f(x)} \;[f'(x)] = f'(x)e^{f(x)} \\ \\ &2.\; \frac {d}{dx} (e^{ax+b}) = ae^{ax+b} \end{align*}\)

Example 2:

Differentiate each of the following with respect to \(x\), where \(x\) is in radians. 

\(\begin{align*} &1.{ \;e^{-x}} \\ \\ &2. {\;e^{\;4x-1}\; e^{\sqrt {x}} \over e^x} \\ \\ &3. {\;e^{3x}\;sin\,3x} \\ \\ &4. {\;e^{\;3x+2} \over x } \end{align*} \)

Solution:

1.  \(\begin{align*} \frac {d} {dx}\;e^{-x} = -e^{-x} \end{align*}\)

2. We will use the Law of Indices. 

    \(\begin{align*} \frac {d} {dx}\;\bigg (\frac { e^{\;4x\,-\,1} \; e^{\sqrt{x}} } {e^x} \bigg) &= \frac {d} {dx} \bigg ( e^{(4x\,-\,1)\;+\;\sqrt {x} \,- \,x} \bigg) \\ \\ &= \frac {d} {dx} \bigg ( e^{3x\,-\,1\,+\,x^{\frac {1}{2}}} \bigg) \end{align*}\)

    We will then use the differentiating exponent through chain rule. 

\(\begin{align*} &= \textstyle e^{ 3x-1+x^{ \frac {1}{2}} }\frac{d}{dy} (3x-1+x^{\frac {1}{2}}) \\ \\ &= \textstyle e^{ 3x+1+\sqrt {x} } ( 3+ \frac {1}{2}x^{-\frac {1}{2}} ) \\ \\ &= \textstyle e^{ 3x+1+\sqrt {x} } ( 3+ \frac {1}{2\sqrt {x} } ) \\ \\ &=\textstyle ( 3+ \frac {1}{2\sqrt {x} } )e^{ 3x-1+\sqrt {x} } \end{align*}\)

3.  We use the product rule to solve the problem. 

    \(\begin{align*} \frac {d}{dx} [e^{3x} sin(3x)] &=3e^{3x}cos3x+3sin3x \;e^{3x} \\ \\ &= 3e^{3x} (cos3x+sin3x) \end{align*}\)

4.  We will use the quotient rule to solve the problem. 

     \(\begin{align*} \frac {d}{dx} \bigg[\frac {e^{3x+2}}{x}\bigg] &=\frac {x(3e^{3x+2} )- e^{3x+2}}{x^2} \\ \\ &= \frac {e^{3x+2}(3x-1)}{x^2} \end{align*}\)

Differentiating \(\ln x\)

Differentiating \(\ln x\) is simple and gives:

\(\begin{align*} \frac {d} {dx}\;(\ln\;x) = \frac {1}{x} \end{align*}\)

Example 3:

Differentiate each of the following with respect to \(x\)

  1. \(\begin{align*} x \; \ln\; x \end{align*}\)
  2. \(\begin{align*} \frac {\ln\;x}{2x} \end{align*}\)

Solution:

  1. We use the product rule to solve the problem. 

\(\begin{align*}​​ \frac {d}{dx} ( x\;\ln\;x) &=​​\textstyle x(\frac {1}{x}) \;+\; \ln\;x(1) \\ \\ &= 1\;+\; \ln\;x \end{align*}\)

  1. We use the quotient rule to solve the problem. 

\(\begin{align*}\frac {d}{dx} \bigg( \frac {\ln x}{2x}\bigg) &= \frac {2x(\frac {1}{x})-2\ln x }{4x^2} \\ \\ &= \frac {2(1-\ln x)}{4x^2} \\ \\ &=\frac {1-\ln x}{2x^2} \end{align*}\)

 

Chain Rule On Logarithmic Functions

After differentiating \(\ln x\), let us now look at how to differentiate  \(\ln f(x)\).

\(\begin{align*} \frac {d}{dx}\;\ln f(x) &=\frac {1}{f(x)} f'(x) \\ \\ &=\frac {f(x)}{f'(x)} \end{align*}\)

Example 4:

Differentiate \(\begin{align*} \ln x² \end{align*}\).

Solution:

Note:

\(\ln x^2= \ln (x^2) \) and not \( (\ln x)^2 \)

\(\begin{align*} \frac {d}{dx}\;(\ln x^2) &= \textstyle\frac {2x}{x^2}\\ \\ &=\textstyle \frac {2}{x} \end{align*} \)

Conclusion

In the article, we learned about Differentiation of Exponential and Logarithmic Functions as per the syllabus of the Secondary 4 A Maths class. We discussed about differentiating the exponential function \(e^x\). We also studied about chain rules on exponential functions and differentiating \(\begin{align*} \ln x \end{align*}\)

 


 

Continue Learning
Introduction To Differentiation Applications Of Differentiation
Differentiation Of Exponential And Logarithmic Functions Integration Techniques
Applications Of Integration  

 

Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
Claim your free demo today!
Claim your free demo today!
Arrow Down Arrow Down
Arrow Down Arrow Down
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Get a free diagnostic report of your child’s strengths & weaknesses!
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
Gain access to 300,000 questions aligned to MOE syllabus
Trusted by over 220,000 students.
Trusted by over 220,000 students.
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
media logo
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration Geniebook CTA Illustration
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!