chevron icon chevron icon chevron icon

Decimals - Operations & Conversions

In this article we will learn about Decimals. We will study the various operations and the conversions of decimals into fractions and vice versa. The details covered are as per the Primary 5 Math requirements. 

The lesson objectives are: 

  1. Multiplying by \(10\)\(100\) or \(1000\)
  2. Multiplying by multiples of \(10\)\(100\) or \(1000\)
  3. Dividing by \(10\)\(100\) or \(1000\)
  4. Dividing by multiples of  \(10\)\(100\) or \(1000\)
  5. Conversion of measurements

Conversion of fractions to decimals and vice-versa

Question 1: 

Express \(\begin{align} 1\frac {3}{5} \end{align}\) as decimal. 

Solution:

\(\begin {align*} 1\frac {3}{5} &= 1\frac {6}{10} \\[2ex] &= 1.6 \end {align*}\)

Answer:

\(1.6\)

 

Question 2: 

Express \(\begin{align} 2\frac {1}{4} \end{align}\) as decimal. 

Solution:

\(\begin {align*} 2\frac {1} {4} &= 2\frac {25}{100} \\[2ex] &= 2.25 \end {align*}\)

Answer:

\(2.25\)

 

Question 3: 

Express \(\begin{align} 3\frac {3}{8} \end{align}\) as a decimal. 

Solution: 

\(\begin {align*} 3 \frac {3} {8} &= 3 \frac {375}{1000} \\[2ex] &= 3.375 \end {align*}\)

Answer:

\(3.375\)

 

Question 4: 

Express \(\begin{align} 2\frac {5}{9} \end{align}\) as a decimal rounded to \(2\) decimal places. 

Solution: 

​ Express 2 5/9  as a decimal rounded to 2 decimal places.   ​

\(\begin {aligned} \frac {5} {9} &≈ 0.555 \\[2ex] &≈ 0.56 \quad \text{(2 decimal places)} \\[4ex] 2 \frac {5} {9} &= 2+ \frac {5} {9} \\[2ex] &≈ 2+0.56\\[2ex] &≈ 2.56 \quad \text{(2 decimal places)} \end {aligned}\)

Answer:

\(2.56\)

 

Question 5: 

Express \(1.4\) as a fraction in its simplest form.

Solution: 

\(\begin {align*} 1.4 &= 1 \frac {4}{10} \\[2ex] &= 1 \frac {2}{5} \end {align*}\)

Answer:

\(\begin{align} 1 \frac {2}{5} \end{align}\)

 

Question 6: 

Express \(2.12\) as a fraction in its simplest form. 

Solution: 

\(\begin {align*} 2.12 &= 2 \frac {12}{100} \\[2ex] &= 2 \frac {3}{25} \end {align*}\)

Answer:

\(\begin{align} 2 \frac {3}{25} \end{align}\)

 

Question 7: 

Express \(3.625\) as a fraction in its simplest form. 

Solution: 

\(\begin {align*} 3.625 &= 3 \frac {625}{1000} \\[2ex] &= 3 \frac {5}{8} \end {align*}\)

Answer:

\(\begin{align} 3 \frac {5}{8} \end{align}\)

 

1. Multiplying by \(10\)\(100\) or \(1000\)

Tip: When a decimal is multiplied by \(10\)\(100\) or \(1000\), the decimal point shifts to the right by the number of ‘\(0\)’s.

Example: 

​ Multiplying by 10, 100 or 1000

 

Question 1: 

Multiply \(5.9\) by \(10\)

Solution: 

\(5\overset{\:\curvearrowright}{.9} \times 10 = 59\)

Answer:

\(59\)

 

Question 2: 

Multiply \(0.404\) by \(100\)

Solution:

\(4 \overset{\:\:\curvearrowright}{.4}\overset{\:\curvearrowright}{0}\:4 \times 100 = 440.4\)

Answer:

\(40.4\)

 

Question 3: 

Multiply \(76.9\) by \(1000\)

Solution:

\(76 \overset{\:\curvearrowright}{.9}\overset{\:\curvearrowright}{\phantom{9}}\overset{\:\curvearrowright}{\phantom{9}} \times 1000 = 76\,900\)

Answer:

\(76 \;900\)

 

2. Multiplying by multiples of  \(10\)\(100\) or \(1000\)

Examples: 

​ Multiplying by multiples of 10, 100 or 1000

 

Question 1: 

Multiply \(0.05\) by \(60. \)

Solution: 

\(\begin{aligned} 0.05 \times 60 &= 0 \overset{\:\curvearrowright}{.0}\,5 \times 10 \times 6\\[2ex] &= 0.5 \times 6\\[2ex] &= 3 \end{aligned}\)

Answer:

\(3\)

 

Question 2: 

Multiply \(3.64\) by \(300.\)

Solution:

\(\begin{aligned} 3.64 \times 300 &= 3 \overset{\:\curvearrowright}{.6}\overset{\curvearrowright}{4} \times 100 \times 3\\[2ex] &= 364 \times 3\\[2ex] &= 1092 \end{aligned}\)

Answer:

\(1092\)

 

Question 3: 

Multiply \(2.617\) by \(7000\).

Solution:

\(\begin{aligned} 2.617 \times 7000 &= 2 \overset{\:\curvearrowright}{.6}\overset{\:\curvearrowright}{1}\overset{\:\curvearrowright}{7} \times 1000 \times 7\\[2ex] &= 2617 \times 7\\[2ex] &= 18\;319 \end{aligned}​​​​​​​\)

Answer:

\(18 \;319\)

 

3. Dividing by \(10\)\(100\) or \(1000\)

Tip: When a decimal is divided by \(10\)\(100\) or \(1000\) the decimal point shifts to the left by the number of ‘\(0\)’s.

Examples: 

​ Dividing by 10, 100 or 1000

 

Question 1: 

Divide \(5.8\) by \(10\)

Solution:

\(\overset{\curvearrowleft}{\;\;5.}\:8 \div 10 = 0.58 ​​​​​\)

Answer:

\(0.58\)

 

Question 2: 

Divide \(30.3\) by \(100\)

Solution: 

\(\overset{\curvearrowleft}{\;3}\overset{\curvearrowleft}{\;\:0.}\;3 \div 100 = 0.303\)

Answer:

\(0.303\)

 

Question 3: 

Divide \(2\) by \(1000\).

Solution:

\( \overset{\curvearrowleft}{\phantom{2}} \overset{\curvearrowleft}{\phantom{2}}\overset{\curvearrowleft}{\;2} \div 1000 = 0.002\)

Answer:

\(0.002\)

 

4. Dividing by multiples of \(10\)\(100\) or \(1000\)

Examples: 

​ Dividing by multiples of 10, 100 or 1000

 

Question 1: 

Divide \(2.1\) by \(30\)

Solution:

\(\begin{aligned} 2.1 \div 30 &=  \overset{\curvearrowleft}{\:2.}1 \div 10 \div 3\\[2ex] &= 0.21 \div 3\\[2ex] &= 0.07 \end{aligned}\)

Answer:

\(0.07\)

 

Question 2: 

Divide \(763\) by \(700\)

Solution: 

\(\begin{aligned} 763 \div 700 &= 7 \overset{\:\curvearrowleft}{\:6}\overset{\:\curvearrowleft}{\:3} \div 100 \div 7\\[2ex] &= 7.63 \div 7\\[2ex] &= 1.09 \end{aligned}\)

Answer:

\(1.09\)

 

Question 3: 

Divide \(535\) by \(5000\).

Solution:

\(\begin{aligned} 535 \div 5000 &= \overset{\:\curvearrowleft}{\,5} \overset{\:\curvearrowleft}{\:3}\overset{\:\curvearrowleft}{\:5} \div 1000 \div 5\\[2ex] &= 0.535 \div 5\\[2ex] &= 0.107 \end{aligned}\)

Answer:

\(0.107\)

 

5. Conversion of measurements

\(\begin{align} 1 \textrm{ km} &= 1000 \textrm{ m} \\[10ex] 1 \textrm{ m} &= 100 \textrm{ cm} \end{align}\)

1 km = 1000 m

1 m = 1000 cm
 
\(\begin{align} 1 \textrm{ kg} &= 1000 \textrm{ gm} \end{align}\) 1 kg = 1000 gm
\(\begin{align} 1 \mathrm{ \;\ell} &= 1000 \mathrm{ \;m\ell} \\ \end{align}\) 1 l = 1000 ml

When we convert from a larger unit to a smaller unit, we multiply.

 

Question 1: 

Express \(0.77 \textrm{ km}\) in metres. 

Solution:

\(\begin{align} 0.77 \textrm{ km} &= 0.77 \times 1000 \textrm{ m} \\[2ex] &= 770 \textrm{ m} \end{align}\)

Answer:

\(770 \textrm{ m}\)

 

Question 2: 

Express \(12.05 \textrm{ kg}\) in kilograms and grams. 

Solution:

\(\begin{align} 12.05 \textrm{ kg} &= 12.05 × 1000 \textrm{ g} \\[2ex] &= 12 \;050 \textrm{ g} \\[2ex] &= 12 \textrm{ kg} \;50 \textrm{ g} \end{align}\)

Answer:

\(12 \textrm{ kg } 50 \textrm{ g}\)

 

Question 3:

Express \(\begin{align}​ 4 \frac {1}{25} \textrm{ m} \end{align} \) in metres and centimetres. 

Solution: 

\(\begin{align}​ 4 \frac {1}{25} \textrm{ m} &= 4 \frac {4}{100} \textrm{ m} \\[2ex] &= 4.04 \textrm{ m} \\[2ex] &= 4.04 \times 100 \textrm{ m} \\[2ex] &= 404 \textrm{ cm} \\[2ex] &= 4 \textrm{ m } 4 \textrm{ cm} \end{align}\)

Answer:

\(4 \textrm{ m } 4 \textrm{ cm}\)

Note: When we convert from a smaller unit to a larger unit, we divide. 

 

Question 4: 

Express \(86 \mathrm{\;m\ell}\) in litres. 

Solution: 

\(86 \mathrm{\;m\ell} \div 1000 = 0.086 \mathrm{\;\ell}\)

Answer:

\(0.086 \mathrm{\;\ell}\)

 

Question 5: 

Express \(2 \textrm{ m } 5 \textrm{ cm }\) in metres. 

Solution: 

\(\begin{align}​ 2 \textrm{ m } 5 \textrm{ cm} &= 205 \textrm{ cm } \\[2ex] &= 205 \div 100  \\[2ex] &= 2.05 \textrm{ m}  \end{align}\)

Answer:

\(2.05 \textrm{ m}\)

 


 

Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity

 

Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
Claim your free demo today!
Claim your free demo today!
Arrow Down Arrow Down
Arrow Down Arrow Down
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Get a free diagnostic report of your child’s strengths & weaknesses!
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
Gain access to 300,000 questions aligned to MOE syllabus
Trusted by over 220,000 students.
Trusted by over 220,000 students.
Arrow Down Arrow Down
Arrow Down Arrow Down
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.
media logo
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration
Geniebook CTA Illustration Geniebook CTA Illustration
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!