chevron icon chevron icon chevron icon

Integers, Rational Numbers And Real Numbers

Integers: These are whole numbers, including positive numbers, negative numbers, and zero. Examples: \(-3\)\(0\)\(7\).

Rational Numbers: These are numbers that can be expressed as fractions, where the numerator and denominator are both integers. Examples: \(\displaystyle\frac{3}{4}\)​, \(\displaystyle-\frac{2}{5}\), \(0.25\) (which is \(\displaystyle\frac{1}{4}\)​ in fraction form).

Real Numbers: This includes all rational numbers and irrational numbers. Rational numbers can be expressed as fractions or decimals, while irrational numbers cannot be expressed as fractions and have non-repeating, non-terminating decimal expansions. Examples: \(\large\pi\) (irrational), \(\sqrt{2}\) (irrational), \(1.5\) (rational).

In this chapter, we will be discussing the below-mentioned topics in detail

  • Proper Fractions, Improper Fractions, Mixed Numbers
  • Adding and subtracting fractions and mixed numbers 
  • Adding and subtracting negative fractions and mixed numbers
  • Multiplying and dividing positive fractions and mixed numbers
  • Combined operations on positive and negative fractions and mixed numbers

Rational Numbers

A rational number is a number which can be expressed as a fraction. Some examples of rational numbers are as follows:

Proper Fractions Improper Fractions Mixed Numbers
\(\begin{align} \frac{3}{4} \end{align}\) \(\begin{align} \frac{4}{3} \end{align}\) \(\begin{align} \frac{4}{3} = 1\frac{1}{3} \end{align}\)

Proper Fractions:

A proper fraction is when the value of the numerator is smaller than that of the denominator. 

Improper Fractions:

An improper fraction is when the value of the denominator is bigger than that of the numerator. 

Mixed Numbers:

Improper fractions are expressed as the sum of an integer and a proper fraction.

Example:

  \(\begin{align*} 1\frac13 &= 1 + \frac13\\ &= \frac33 + \frac13 \\ &= \frac43\end{align*}\)

Negative Rational Numbers

Proper And Improper Fractions Mixed Numbers
\(\begin{align} -\frac{3}{4} \end{align}\) \(\begin{align} -1\frac{1}{4} \end{align} \)
\(\begin{align} \frac{-3}{4} \end{align}\) \(\begin{align} \frac{3}{-4} \end{align}\) \(\begin{align} -\frac{5}{4} \end{align}\)

 

Both \(\begin{align} \frac{-3}{4} \end{align}\) or \(\begin{align} \frac{3}{-4} \end{align}\) will simplify to give us  \(\begin{align} -\frac{3}{4} \end{align}\).

This is because a negative integer divided by a positive integer would give a negative value. Likewise, a positive integer divided by a negative integer would also give a negative value.

Similarly, if we rewrite the mixed number \(\begin{align} -1\frac{1}{4} \end{align} \) into an improper fraction, it will gives us \(\begin{align} -\frac{5}{4} \end{align}\) , in which it can be rewritten as  \(\begin{align} \frac{-5}{4} \end{align}\) or \(\begin{align} \frac{5}{-4} \end{align}\).

1. Addition and subtraction of positive and negative fractions and mixed numbers 

  Same Denominator Different Denominator
Addition

Step 1: 
Join
Step 2:  Expand
Step 3: Simplify
\(\begin{align*} \frac75+\frac15&=\frac{7+1}5\\\\               &=\frac85\\\\ &=1\frac3 5 \end{align*}\) \(\begin{align*} \frac75+\frac12&=\frac{2(7)+5(1)}{10}\\\\               &=\frac{14+5}{10}\\\\ &=\frac{19}{10}\\\\ &=1\frac9{10} \end{align*}\)
Subtraction

Step 1:
Join
Step 2: Expand
Step 3: Simplify
\(\begin{align*} \frac75-\frac15&=\frac{7-1}5\\\\               &=\frac65\\\\ &=1\frac1 5 \end{align*}\) \(\begin{align*} \frac75-\frac12 &= \frac{2(7)-5(1)}{10}\\\\              &=\frac{14-5}{10}\\\\ &=\frac9 {10} \end{align*}\)

 

Let’s understand this with the help of some examples:

Question 1:

Without using a calculator, evaluate the following.

  1. \(\begin{align} \frac{1}{3}+(-\frac{1}{4}) \end{align}\)
  2. \(\begin{align} -\frac{2}{5}-(-\frac{1}{2})\\ \end{align} \)
  3. \(\begin{align} -3\frac{1}{2}+(-\frac{1}{3}) \end{align}\)
  4. \(\begin{align} 1\frac{1}{2}+(-2\frac{1}{3}) \end{align}\)

Solution: 

1. 

\(\begin{align*} & \frac13+(-\frac14)\\ &=\frac13-\frac14\\ &=\frac{4(1)\;-\;3(1)}{12}\\ &=\frac{4 -3}{12}\\ &=\frac1{12} \end{align*}\)

2.

\(\begin{align*} & -\frac25-(-\frac12)\\&=-\frac25+\frac12\\ &=-\frac25+\frac12\\ &=\frac{2 (-2) + 5 (1)}{10}\\ &=\frac{-4+5}{10}\\ &=\frac{1}{10} \end{align*}\)

3.

\(\begin{align*} & -3\frac12+(-\frac13)\\&=-\frac72-\frac13\\ &=\frac{-7}{2}-\frac13\\ &=\frac{3 (-7)\;-\;2 (1)}6\\ &=\frac{-21\;-\;2}6\\ &=\frac{-23}6\\ &=-3\frac56 \end{align*}\)

4. 

\(\begin{align*} & 1\frac12+(-2\frac13)\\&=\frac32-\frac73\\ &=\frac{3 (3)\;-\;2 (7)}6\\ &=\frac{9\;-\;14}6\\ &=\frac{-5}6\\ &=-\frac56 \end{align*}\)

2. Multiplication and Division of fractions and mixed numbers 

  Proper & Improper fractions Mixed Numbers
Multiplication \(\begin{align*} \frac25 \times \frac{3}{4} &=\frac{2 × 3}{5 × 4}\\\\ &=\frac6{20}\\\\ &=\frac3{10} \end{align*}\) \(\begin{align*} 1\frac25 \times \frac34 &= \frac75 × \frac34 \\\\ &= \frac{7 × 3}{ 5 × 4} \\\\ &=\frac{21}{20}\\\\ &=1\frac1{20} \end{align*}\)
Division \(\begin{align*} \frac25÷\frac34&=\frac25 × \frac43\\\\            &=\frac8 {15} \end{align*}\) \(\begin{align*} 1\frac25÷\frac34&=\frac75 × \frac43 \\\\ &=\frac{28}{15} \\\\ &=1\frac{13}{15} \end{align*}\)

 

Let’s understand this with the help of some examples:

Question 2:

Without using a calculator, evaluate the following.

  1. \(\displaystyle{\frac23 × (-\frac14)}\)
     
  2. \(\displaystyle{-\frac25 × (-\frac12)\\}\)
     
  3. \(\displaystyle{-3\frac12 × (-\frac13)}\)

Solution: 

1.

\(\begin{align*} & \frac {2}{3} \times (-\frac {1}{4})\\\\ &= \frac{2 \times (-1)}{3 \times 4} \\\\ &=\frac{-2}{12} \\\\ &=\frac {-1}{6} \\\\ &= -\frac{1}{6} \end{align*}\)

2. 

 \(\begin{align*} & -\frac {2}{5} \times (-\frac {1}{2}) \\\\ & = \frac {-2}{5}\times\frac{-1}{2}\\\\ &= \frac{(-2) \times (-1)}{5 \times 2} \\\\ &=\frac{2}{10} \\\\ &=\frac {1}{5} \\\\ \end{align*}\)

3.

 \(\begin{align*} &-3\frac {1}{2} \times (-\frac {1}{3}) \\\\ &= -\frac{7}{3}\times (-\frac{1}{3})\\\\ &=\frac{(-7) \times (-1)}{2 \times 3} \\\\ &=\frac{7}{6} \\\\ &= 1\frac{1}{6} \end{align*}\)

 


 

Continue Learning
Basic Geometry Linear Equations
Number Patterns Percentage
Prime Numbers Ratio, Rate And Speed
Functions & Linear Graphs 1 Integers, Rational Numbers And Real Numbers
Basic Algebra And Algebraic Manipulation 1 Approximation And Estimation

 

Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!
Claim your free demo today!
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.
 
Arrow Down Arrow Down
 
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.