chevron icon chevron icon chevron icon

Volume Of A Liquid

In this article, the objectives are: 

  1. Calculate the volume of a liquid in a rectangular container
  2. Calculate the volume of liquid needed to fill a container to a certain height

Volume recap

  1. \( \text{Volume of a cube} =  \text{length} \times \text{length} \times \text{length}\)

  1. \( \text{Volume of a cuboid} =  \text{length} \times \text{breadth} \times \text{height}\)

1. Calculate the volume of a liquid in a rectangular container

Question 1: 

The diagram below shows a rectangular tank filled with some liquid. 

Find the volume of the liquid in the tank.

Solution: 

Length of cuboid \(= \text{12 cm}\)

Breadth of cuboid \(= \text{5 cm}\)

Height of liquid in cuboid \(= \text{4 cm}\)

Volume of a liquid in cuboid

\(\begin{align*}&= \mathrm{length \times breadth \times height} \\[2ex] &= \mathrm{12 \;cm \times 5 \;cm \times 4 \;cm} \\[2ex] &= \text{240 cm}^3 \end{align*}\)

Answer: 

\(\text{240 cm}^3\)

Question 2: 

In the diagram below, find the volume of the liquid in the rectangular tank.

Solution: 

Length of rectangular tank \(= \text{14 m}\)

Breadth of rectangular tank \(= \text{5 m}\)

Height of liquid in rectangular tank

\(\begin{align*}​ &= \text{10 m – 6 m} \\[2ex] &= \text{4 m} \end{align*}\)

 

Volume of liquid in tank

\(\begin{align*}&= \mathrm{length \times breadth \times height} \\[2ex] &= \mathrm{14 \;m \times 5 \;m \times 4 \;m} \\[2ex] &= \text{280 m}^3 \end{align*}\)

Answer:

\(\text{280 m}^3\)

Question 3: 

Find the volume of the liquid in the rectangular tank. Express your answer in litres. 

Volume Of A Liquid Image 5

Solution: 

Length of rectangular tank \(= \text{20 cm}\)

Breadth of rectangular tank \(= \text{8 cm}\)

Height of liquid in rectangular tank

\(\begin{align*}​ &= \text{17 cm – 5 cm} \\[2ex] &= \text{12 cm} \end{align*}\)

 

Volume of liquid in the tank 

\(\begin{align*}​ &= \mathrm{length \times breadth \times height} \\[2ex] &= \mathrm{20 \;cm \times 8 \;cm \times 12 \;cm} \\[2ex] &= \mathrm{1920 \;cm}^3 \\[2ex] &= \mathrm{1.92 \;litres} \end{align*}\)

Answer:

\(\text{1.92 litres}\)

Question 4: 

Chloe bought some apple juice and poured all of it into \(\displaystyle{2}\) rectangular containers. Container \(\displaystyle{\text{P}}\) measuring \(\displaystyle{\text{15 cm}}\) by \(\displaystyle{\text{8 cm}}\) by \(\displaystyle{\text{6 cm}}\) is \(\displaystyle{\frac{3}{4}}\) filled while Container \(\displaystyle{\text{Q}}\) measuring \(\displaystyle{\text{25 cm}}\) by \(\displaystyle{\text{18 cm}}\) by \(\displaystyle{\text{10 cm}}\) is \(\displaystyle{\frac{5}{6}}\) filled. What is the volume of apple juice that Chloe bought?

Solution: 

Volume of apple juice in Container \(\displaystyle{\text{P}}\)

\(\begin{align*}​ &= \mathrm{\frac{3}{4}\times \text{length} \times \text{breadth} \times \text{height}} \\[2ex] &= \mathrm{\frac{3}{4}\times 15 \;cm \times 8 \;cm \times 6 \;cm} \\[2ex] &= \mathrm{540 \;cm}^3 \\ \end{align*}\)

 

Volume of apple juice in Container \(\displaystyle{\text{Q}}\)

\(\begin{align*}​ &= \mathrm{\frac{5}{6}\times \text{length} \times \text{breadth} \times \text{height}} \\[2ex] &= \mathrm{\frac{5}{6}\times 25 \;cm \times 18 \;cm \times 10 \;cm} \\[2ex] &= \mathrm{3750 \;cm}^3 \\ \end{align*}\)

 

Total volume of apple juice Chloe bought 

\(=\) Volume of apple juice in Container \(\displaystyle{\text{P + }}\) Volume of apple juice in Container \(\displaystyle{\text{Q}}\)

\(\begin{align*}​ &= \mathrm{540 \;cm}^3 + \mathrm{3750 \;cm}^3 \\[2ex] &= \mathrm{4290 \;cm}^3 \end{align*}\)

Answer:

\(\mathrm{4290 \;cm}^3\)

 

Question 5: 

A painter mixed some paint to paint a wall. He poured all the paint into two rectangular containers. Container \(\text{X}\) measuring \(\displaystyle{\text{55 cm}}\) by \(\displaystyle{\text{48 cm}}\) by \(\displaystyle{\text{30 cm}}\) was \(\displaystyle{\frac{5}{8}}\) filled while Container \(\text{Y}\) measuring \(\displaystyle{\text{47 cm}}\) by \(\displaystyle{\text{39 cm}}\) by \(\displaystyle{\text{30 cm}}\) was \(\displaystyle{\frac{10}{13}}\) filled. What was the volume of the paint that the painter mixed?

Solution: 

Volume of paint in Container \(\text{X}\) 

\(\begin{align*}​ &= \frac{5}{8}\times \text{length} \times \text{breadth} \times \text{height} \\[2ex] &= \frac{5}{8}\times 55 \text{ cm} \times 48 \text{ cm} \times 30 \text{ cm} \\[2ex] &= 49\,500 \text{ cm}^3 \\ \end{align*}\)

 

Volume of paint in Container \(\text{Y}\) 

\(\begin{align*}​ &= \frac{10}{13}\times \text{length} \times \text{breadth} \times \text{height} \\[2ex] &= \frac{10}{13}\times 47 \text{ cm} \times 39 \text{ cm} \times 30 \text{ cm} \\[2ex] &= 42\,300 \text{ cm}^3 \\ \end{align*}\)

 

Total volume of paint mixed 

 \(=\) Volume of paint in Container \(\text{X}\) \(+\) Volume of paint in Container \(\text{Y}\)

\(\begin{align*}​ &= 49 \,500 \text{ cm}^3 + 42 \,300 \text{ cm}^3 \\[2ex] &= 91 \,800 \text{ cm}^3 \end{align*}\)

Answer:

\(91 \,800 \text{ cm}^3\)

 

2. Calculate the volume of liquid needed to fill a container to a certain height

Question 1: 

A rectangular tank shown below was half–filled with water. Another \(10.05 \text{ litres}\) of water was then added to the tank. How much more water was needed to fill the tank to the brim? Give your answer in litres.

Solution: 

\(1000 \text{ cm}^3 = 1 \mathrm{ \,\ell}\)

 

Volume of water in the tank 

\(\begin{align*}​ ​&= \frac{1}{2} \times 35 \text{ cm} \times 18 \text{ cm} \times 36 \text{ cm} \\[2ex] &= 11 \;340 \text{ cm}^3 \\[2ex] &= 11.34 \;ℓ​ \end{align*}\)

 

Remaining volume left to fill the tank

\(\begin{align*}​ ​&​= \frac{1}{2} \times 35 \text{ cm} \times 18 \text{ cm} \times 36 \text{ cm}\\[2ex] &= 11\,340 \text{ cm}^3\\[2ex] &= 11.34 \;ℓ​ \end{align*}\)

 

Volume of water added in the tank \(= 10.05 \;ℓ\)

Volume of water needed to fill till the brim 

\(\begin{align*}​ ​ &​= 11.34 \;ℓ − 10.05 \;ℓ\\[2ex] &= 1.29 \;ℓ \end{align*}\)

Answer:

\(1.29 \;ℓ\)

Question 2:

Jenny filled \(\displaystyle{\frac {2}{3}}\) of a square–based container with a cocktail. The guests drank \(\text{2.5 litres}\) of cocktail. How much more cocktail must she add in order to fill the container to the brim? Give your answer in litres.

Volume Of A Liquid Image 7

 

Solution:  

\(1000 \text{ cm}^3 = 1 \;ℓ\)

 

Volume of cocktail 

\(\begin{align*}​ ​ &= \frac{1}{2} \times 11 \text{ cm} \times 11 \text{ cm} \times 45 \text{ cm} \\[2ex] &= 3630 \text{ cm}^3 \\[2ex] &= 3.63 \;ℓ​ \end{align*}\)

 

Volume of cocktail drank \(= 2.5 \;ℓ\)

 

Volume of cocktail left

\(\displaystyle{ = 3.63 \;ℓ - 2.5 \;ℓ \\[2ex] = 1.13 \;ℓ }\)

 

Volume of container

\(\begin{align}​ &= 11 \text{ cm} \times 11 \text{ cm} \times 45 \text{ cm} \\[2ex] &= 5445 \text{ cm}^3 \\[2ex] &= 5.445 \;ℓ \end{align}\)

 

Volume of cocktail needed to fill till the brim

\(\begin{align*}​ &= 5.445 \;ℓ - 1.13 \;ℓ \\[2ex] &= 4.315 \;ℓ \end{align*}\)

Answer:

\(4.315 \;ℓ\)

Question 3: 

Karen filled \(\displaystyle{\frac {1}{3}}\) of rectangular Container \(\text{A}\) measuring \(\text{24 cm}\) by \(\text{18 cm}\) by \(\text{30 cm}\) with orange juice. Karen then added more orange juice such that half of Container \(\text{A}\) was filled with orange juice. How much more orange juice did Karen add to Container \(\text{A}\)?

Solution: 

Volume of orange juice in the tank 

\(\begin{align*}​ ​&= \frac{1}{3} \times 24 \text{ cm} \times 18 \text{ cm} \times 30 \text{ cm} \\[2ex] &= 4320 \text{ cm}^3 \end{align*}\)

 

Volume of \(\displaystyle{ \frac {1}{2}}\) of Container \(\text{A}\)

\(\begin{align*}​ ​ &= \frac{1}{2} \times 24 \text{ cm} \times 18 \text{ cm} \times 30 \text{ cm} \\[2ex] &= 6480 \text{ cm}^3 \end{align*}\)

 

Volume of orange juice Karen added

\(\begin{align}​ &= 6480 \text{ cm}^3 - 4320 \text{ cm}^3 \\[2ex] &= 2160 \text{ cm}^3 \end{align}\)

Answer: 

\(2160 \text{ cm}^3\)

 

OR 

 

\(\displaystyle{\frac {1}{2}-\frac{1}{3} = \frac{1}{6}}\)

Volume of orange juice Karen added

\(\begin{align}​ ​\textstyle &= \frac{1}{6} \times 24 \text{ cm} \times 18 \text{ cm} \times 30 \text{ cm} \\[2ex] &= 2160 \text{ cm}^3 \\ \end{align}\)

Answer: 

\(2160 \text{ cm}^3\)

Conclusion

In this article, we have learnt how to calculate the volume of liquids in a container as per the Primary 5 Maths level syllabus. 

Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity
Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!
Claim your free demo today!
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.
 
Arrow Down Arrow Down
 
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.