chevron icon chevron icon chevron icon

Linear Equations

Understanding Linear Equations is crucial at the secondary 1 because they serve as a cornerstone for more advanced mathematical concepts. Linear Equations introduce students to fundamental algebraic concepts such as variables, coefficients, and constants. Mastering these basics is essential for progressing to more complex algebraic topics.

Linear Equation

A linear equation is a math statement where the variables (like \(x\) or \(y\)) are not raised to any power other than \(1\). In simpler terms, no squared or cubed variables.

Each linear equation has an equals sign, showing that both sides are exactly equal.

When graphed, linear equations make straight lines. They're often written in the form \(ax + by + c = 0\), or more commonly, \(y = ax + b\).

For example:

  • \(3x - 2y + 6 = 0\)
  • \(y = 4x + 3\)
  • \(5y - 9x = 6\)
  • \(5x = 15\)

Solving Linear Equation

In this chapter, we will be discussing the below-mentioned topics in detail:

  • Solving a Linear Equation by Balancing the Equation.
  • Solving a Linear Equation with Fractional Coefficients.
  • Solving Simple Fractional Equations that can be Reduced to Linear Equations. 

1. Solving a Linear Equation by balancing the equation.

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 1: } &x + a = c, \\[2ex] &\text{where }a \text{ and } c \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 1:

Solve:  \(\begin{align} x + 5 = 8 \end{align}\).

Solution:

\(\begin{align} x + 5 &= 8\\[2ex] x + 5 – 5 &= 8 – 5 \\[2ex] x &=3 \end{align}\)

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 2: } &ax + b = c,\\[2ex] &\text{where }a, b \text{ and } c \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 2:

Solve:  \(3x − 1 = 5\).

Solution:

\(\begin{align} 3x − 1 &= 5\\[2ex] 3x − 1 + 1 &= 5 + 1 \\[2ex] 3x &=6 \end{align}\)

Dividing both the sides by \(3\)

     \(\begin{align} 3x \div 3 &= 6 \div 3 \\[2ex] x&=2 \end{align}\)

Hence, \(\begin{align} x = 2. \end{align}\)

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 3: } &ax + c = bx + d,\\[2ex] &\text{where }a, b, c \text{ and } d \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 3:

Solve:  \(4x + 1 = 2x − 7\).

Solution:

\(\begin{align*} 4x + 1 &= 2x − 7\\[2ex] 4x + 1 \;– 1 &= 2x \;– 7 – 1\\[2ex] 4x &= 2x \;– 8\\[2ex] 4x \;– 2x &= − 8\\[2ex] 2x &= − 8\\[2ex] x &= − 4 \end{align*}\)

Hence, \(x = − 4\).

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 4: } &a(bx + c) = px + q,\\[2ex] &\text{where }a, b, c, p \text{ and } q \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 4:

Solve:  \(3 (x + 2) = x + 14\).

Solution: 

\(\begin{align} 3 (x + 2) &= x + 14 \end{align}\)

Expanding the equation,

\(\begin{align*} 3x + 6 &= x + 14\\[2ex] 3x \;– x &= 14 \;– 6\\[2ex] 2x &= 8\\[2ex] x &= 4 \end{align*}\)

Hence, \(x = 4\).

 

2.  Solving a linear equation with fractional coefficients.

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 5: } &\frac{x}{a} = b, \\[2ex] &\text{where }a \text{ and } b \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 5:

Solve:  \(\begin{align} \frac{x}{3} &= \;– 5 \end{align}\).

Solution: 

\(\begin{align} \frac{x}{3} &= \;– 5 \end{align}\)

Multiplying both sides by 3

\(\begin{align*} \frac{x}{3} (3) &= (–5) (3)\\[2ex] x &= \;–15 \end{align*}\)

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 6: } &\frac{x}{a} +b = c, \\[2ex] &\text{where }a, b \text{ and } c \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 6:

Solve:  \( \begin{align*} \frac{x}{4} \;– \;2 = 3 \end{align*}\).

Solution: 

\(\begin{align*} \frac{x}{4} \;– \;2 &= 3\\[2ex] \frac{x}{4}  \;–\; 2 + 2 &= 3 + 2\\[2ex] \frac{x}{4}  &= 5\\[2ex] x &= 5\times4\\[2ex] &= 20 \end{align*} \)

Hence, \(x = 20\).

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 7: } &\frac{a}{b}x +c = d, \\[2ex] &\text{where }a, b, c \text{ and } d \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 7:

Solve:  \(\begin{align*} \frac{2}{3} x + 1 &= 7 \end{align*}\).

Solution: 

\(\begin{align*} \frac{2}{3} x + 1 &= 7\\[2ex] \frac{2}{3} x + 1 \;– 1 &= 7 \;– 1\\[2ex] \frac{2}{3} x &= 6\\[2ex] 2x &= 18\\[2ex] x &= 9 \end{align*}\)

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 8: } &\frac{a}{b}x +c = \frac{p}{q}x +r, \\[2ex] &\text{where }a, b, c, p, q \text{ and } r \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 8:

Solve:  \(\begin{align*} \frac{3}{4}x \;– \;3 = \frac{x}{5} + 8 \end{align*}\)

Solution:

\(\begin{align*} \frac{3}{4}x \;– 3 &= \frac{x}{5} + 8\\[2ex] \frac{3}{4} x \;– 3 + 3 &= \frac{x}5 + 8 + 3\\[2ex] \frac{3}{4}x &= \frac{x}5 + 11\\[2ex] \frac{3}{4} x \;– 15 x &= 11\\[2ex] \frac{11}{20}x &= 11\\[2ex] 11x &= 11 \times 20\\[2ex] 11x &= 220\\[2ex] x &= 20 \end{align*} \)        

 

3. Solving Simple Fractional Equations that can be reduced to linear equations.

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 9: } &\frac{ax + b}{c} = d, \\[2ex] &\text{where }a, b, c, \text{ and } d \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 9:

Solve:  \(\begin{align*} \frac{2x + 3}{5}  = 7 \end{align*}\).

Solution:

 \(\begin{align*} \frac{2x+3}5 &= 7\\[2ex] 2x + 3 &= 7 (5)\\[2ex]      2x + 3 &= 35\\[2ex] 2x + 3 \;– 3 &= 35 \;– 3\\[2ex]     2x &= 32\\[2ex]               x &= 16 \end{align*} \)

Hence, \(x = 16\).

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 10: } &\frac{ax + b}{c} = px + q, \\[2ex] &\text{where }a, b, c, p \text{ and } q \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 10:

Solve:  \(\begin{align*} \frac{4x+1}{3} = 2x– 3 \end{align*}\).

Solution: 

  \(\begin{align*} \frac{4x+1}3 &= 2x \;– 3\\[2ex]  4x + 1 &= 3 (2x \;– 3)\\[2ex]  4x + 1 &= 6x \;– 9\\[2ex] 4x – 6x &= \;– 9 \;– 1\\[2ex]   – 2x &= \;–10\\[2ex]          x &= 5 \end{align*} \)

Hence, \(x = 5\).

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 11: } &\frac{ax + b}{c} = \frac{px + q}{r}, \\[2ex] &\text{where }a, b, c, p, q \text{ and } r \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 11: 

Solve:  \(\begin{align*} \frac{2x–3}{5}  = \frac{x+1}{4 } \end{align*}\).

Solution:   

  \(\begin{align*} \frac{2x – 3}5  &= \frac{x + 1}4\\[2ex] 4(2x – 3) &= 5 (x + 1)\\[2ex]    8x – 12 &= 5x + 5\\[2ex]            8x &= 5x + 17\\[2ex]             3x &= 17\\[2ex]              x &= \frac{17}3\\[2ex]       &= 5\frac{2}3 \end{align*} \)

Hence, \(\begin{align} x &= 5\frac{2}{3} \end{align} ​\).

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 12: } &\frac{ax + b}{c} = \frac{p}{q}, \\[2ex] &\text{where }a, b, c, p \text{ and } q \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 12:

Solve:  \(\begin{align} \frac{x + 1}{2x - 3}  &= -\frac{1}{5} \end{align}\).

Solution:  

 \(\begin{align*} \frac{x + 1}{2x - 3}  &= -\frac15\\[2ex] 5(x + 1) &= (–1)(2x \;– 3)\\[2ex]    5x + 5 &= \;–2x + 3\\[2ex]         5x &= \;–2x \;– 2\\[2ex]          7x &= \;–2\\[2ex]         x &=\; -{{2}\over{7}}\\ \end{align*} \)

 

\(\bbox[5px,border:2px solid #262262]{ \small\begin{align} \textbf{Case 13: } &\frac{ax+b}{c}+\frac{px+q}{r} = d,\\[2ex] &\text{where }a, b, c, d, p, q \text{ and } r \text{ are constants.} \end{align}}\)

Let’s understand this with the help of some examples:

Question 13:

Solve:  \(\begin{align} \frac{x+1}{2}-\frac{x-1}{3}  = 1 \end{align}\).

Solution:  

   \(\begin{align*} \frac{x \;+ \;1}2-\frac{x\; - \;1}3  &= 1\\[2ex] \frac{3(x + 1) - 2 (x - 1)}6  &= 1\\[2ex]     \frac{3x + 9 - 2x + 2}6  &= 1\\[2ex]                 \frac{x + 11}6  &= 1\\[2ex]         x + 11 &= 6\\[2ex]                          x &= \;– 5 \end{align*} \)

 


 

Continue Learning
Basic Geometry Linear Equations
Number Patterns Percentage
Prime Numbers Ratio, Rate And Speed
Functions & Linear Graphs 1 Integers, Rational Numbers And Real Numbers
Basic Algebra And Algebraic Manipulation 1 Approximation And Estimation

 

Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!
Claim your free demo today!
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.
 
Arrow Down Arrow Down
 
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.