# Exponential Functions

• Laws of indices
• Simplifying expressions involving exponents

## Euler’s Number ( $e$ )

Euler’s Number is an irrational number which is represented by $e$.

The exact value of $e$ is $2.7182818...$ where the digits go on forever in a series that never ends or repeats (similar to $\pi$).

Question 1:

Using your calculator, evaluate the following expressions.

A) $e^2$

Solution:

Using the calculator,

$e² = 7.88905...$

B) $e^{1/2}$

Solution:

Using the calculator,

$e^{1/2}= 1.64872...$

C) $e^{-3}$

Solution:

Using the calculator,

$e^{-3}= 0.049787$

## Laws of Indices

Question 2:

Without using a calculator, simplify \begin{align*} \frac {1}{\sqrt[3] {27}} \div \bigg(\, 243^{^\frac {3}{4}} \times 9 \bigg ) \end{align*} .

Solution:

Firstly, let us express $27$ and $243$ as powers of $3$

\begin{align*} 27 = 3^3 \end{align*} and \begin{align*} 243 = 3^5 \end{align*}.

Applying the law of indices \begin{align*} \sqrt[n] {a^m} =a^{^{\frac {m}{n}}} \end{align*},

$\frac {1}{3\sqrt{3^3}}$ becomes $\frac {1}{3}$.

Applying the law of indices \begin{align*} (a^m)^n=a^mn \end{align*},

\begin{align*} (3^5)^{^{-\frac{3}{4}}} \end{align*} becomes \begin{align*} 3^{^{5\times(-\frac{3}{4})}} \end{align*}.

\begin{align*} \frac {1}{\sqrt[3]{27}} \div \bigg( \;243 ^{ ^{ \frac {3}{4} }} \times 9 \bigg) &= \frac {1}{3} \div \bigg( 3^{^{5\times(-\frac {3}{4})}} \times 3^2 \bigg ) \\ \\ &= \frac {1}{3} \div \bigg( 3^{^{-\frac {15}{4}}} \times 3^2 \bigg ) \end{align*}

Applying the law of indices \begin{align*} a^m \times a^n = a^{m+n} \end{align*},

\begin{align*} \bigg( 3^{^{(-\frac {15}{4})}} \times 3^2 \bigg ) \end{align*} becomes \begin{align*} \bigg( 3^{^{-\frac {15}{4}+2}} \bigg ) \end{align*}

\begin{align*} \frac {1}{3} \div \bigg( 3^{^{-\frac {15}{4}}} \times 3^2 \bigg ) \end{align*}

Now, applying the law of indices \begin{align*} \frac {1}{a^n} = a^{-n} \end{align*},

\begin{align*} \frac {1}{3} \end{align*} becomes \begin{align*} 3^{-1} \end{align*}

\begin{align*} = 3^{-1} \div \big( 3^{^{-\frac{7}{4}}} \big) \end{align*}

Applying the law of indices \begin{align*} \frac {a^m}{a^n} = a^{m-n} \end{align*} ,

\begin{align*} &= 3^{^{ −1+\frac{7}{4} }} \\ \\ &= 3^{^{\frac {3}{4}}} \\ \\ &= \sqrt[4]{3^3} \\ \\ &= \sqrt[4]{27} \end{align*}

Therefore, the answer is $\sqrt[4]{27}$.

Question 3:

Simplify \begin{align*} \big(\,\sqrt {3} \times \sqrt[3]{9}\,\big)^{1.2x} \end{align*}, leaving your answer as a power of $3$.

Solution:

\begin{align*} \big(\,\sqrt {3} \times \sqrt[3]{9}\,\big)^{1.2x} &= \big (\, 3^{^{\frac {1}{2}}} \times 3^{^{\frac {2}{3}}} \big)^{^{\frac {6x}{5}}} \\ \\ &= \big(\, 3^{^{\frac{1}{2} + \frac{2}{3}}} \,\big)^{^{\frac {6x}{5}}} \\ \\ &= \big(\, 3^{^{\frac{7}{6}}} \,\big)^{^{\frac {6x}{5}}} \\ \\ &= 3^{^{\frac{7x}{6}}} \end{align*}

Question 4:

Simplify \begin{align*} \frac { 4^{x+1} \times \sqrt {32^{2x}} } { 16^{0.5x} \times \,8^{x-3} } \end{align*}, leaving your answer as a power of $2$.

Solution:

\begin{align*} \frac { 4^{x+1} \times \sqrt {32^{2x}} } { 16^{0.5x} \times \,8^{x-3} } &= \frac {(2^2)^{^{x+1}} \times \sqrt{(2^5)^{^{2x}}} } { (2^4)^{^{0.5x}} \times (2^3)^{^{x-3}} } \\ \\ &= \frac {2^{2x+2} \times 2^{^{\frac {10x}{2}}} } {2^{2x} \times 2^{3x-9} } \\ \\ &= \frac {2^{2x+2+5x} } {2^{2x+3x-9} } \\ \\ &= \frac {2^{7x+2} } {2^{5x-9} } \\ \\ &= 2^{7x+2-5x+9} \\ \\ &= 2^{2x+11} \\ \\ \end{align*}

## Conclusion

In this article, we have learnt about exponential functions and how the indices laws may be used in the forward or reverse directions when simplifying exponential functions. Recall the indices laws carefully as they may be easily confused with one another!

Keep learning! Keep improving!

Continue Learning
Quadratic Functions in Real-World Context Equations and Inequalities
Logarithmic Functions Surds
Polynomials & Cubic Equations Partial Fraction
Exponential Functions Coordinate Geometry (Circles)
Linear Law Binomial Theorem
Primary
Secondary
Book a free product demo
Suitable for primary & secondary
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
our educational content
Start practising and learning.
No Error
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Let’s get learning!
resources now.
Error
Oops! Something went wrong.
Let’s refresh the page!
Turn your child's weaknesses into strengths
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.

Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!