# Linear Law

In this article, we will be learning about Linear Law. Specifically, we will be covering the following:

• Converting Non-Linear Algebraic Equation into Linear Form
• Converting Exponential Equation into Linear Form
• Converting Linear Form of an Equation into Non-Linear Equation

## Linear Law

 (i) (ii)

When we look at graph (i) above, we see that at the point of turn, there are two possible ways to draw the graph based on the plotted points. However, this leaves a greater room for error as the curve drawn might not be accurate. Hence, a better way to obtain more accurate points is to convert the curve into a straight-line graph.

This is where we will consider Linear Law.

## Equation of a Straight Line

The general equation of a straight line is $y = mx + c$, where,

Gradient $= m$

y-intercept $= c$

Let’s consider another equation, \begin{align*} y=m \bigg(\frac{1}{x}\bigg)+c. \end{align*}

If we draw the graph of $y$ against $x$, we will obtain an exponential graph. However, when the graph of $y$ against \begin{align*} \frac {1}{x} \end{align*} is drawn, we will obtain a straight line.

## Converting Non-Linear Algebraic Equations into Linear Form

The linear form of any non-linear equation is given by:

$Y=mX+c$

where $m$ is the gradient, $c$ is the y-intercept, and $Y$ and $X$ must contain only $x$ and $y$ variables.

Examples

\begin{align*} X &= xy \;; &Y &= x^2 &------ &\text{ Acceptable} \\ \\ X &= 2x \;; & Y &= \frac{4}{y} &------ &\text{ Unacceptable} \\ \\ X &= 2^x \;; & Y &= 3^y &------ &\text{ Unacceptable} \\ \\ X &= x^n \;; & Y &= y^n &------ &\text{ Acceptable} \end{align*}

 Non-Linear Equation Linear Form \begin{align*} y = \frac{2}{x}-5 \end{align*} \begin{align*} y = \;&2\bigg(\frac{1}{x}\bigg)-5 \\ \\ &\text {where}\\ \\ Y = xy, \;X &= x^2,\; m = 2,\; c = 3 \end{align*} \begin{align*} xy=2x^2+3 \end{align*} \begin{align*} xy &=2x^2+3 \\ \\ &\text {where} \\ \\ Y = xy, \;X &= x^2, \;m = 2, \;c = 3 \end{align*}

Question 1:

Complete the table by converting the following equation into linear form $Y = mX + c$.

Solution:

Non-Linear Equation

Linear Form

Y

X

m

c

\begin{align*} y=2x^3-x^2 \end{align*}

\begin{align*} y &= 2x^3-x^2 \\ y+x^2 &= 2x^3-x^2+x^2 \\ y+x^2 &= 2x^3 \end{align*}

$y+x^2$

$x^3$

$2$ $0$
\begin{align*} y=2x^3-x^2 \end{align*}

\begin{align*} y &= 2x^3-x^2 \\ y \div x^2 &= (2x^3-x^2) \div x^2 \\ \frac {y}{x^2} &= 2x - 1 \end{align*}

\begin{align*} \frac {y}{x^2} \end{align*} $x$ $2$ $-1$

\begin{align*} y=3x^2 + \frac{4}{x^3} \end{align*}

\begin{align*} y &=3x^2 + \frac{4}{x^3} \\ y \times x^3 &= \bigg(3x^2 + \frac{4}{x^3}\bigg) \times x^3 \\ yx^3 &= 3x^5 + 4 \end{align*}

$yx^3$ $x^5$ $3$ $4$

Question 2:

Convert the following equation into linear form $Y = mX + c$.

Solution:

The first operation would be to multiply $(2x + 3)$ on both sides.

\begin{align*} (2x + 3) \times y &= \frac {x^5}{2x+3} \times (2x + 3) \\ \\ (2x + 3)y &= x^5 \end{align*}

The second operation would be to divide by $y$ on both sides.

\begin{align*} 2x + 3 &= \frac {x^5}{y} \end{align*}

Hence, \begin{align*} Y = \frac {x^5}{y}, \;X = x, \;m = 2, \;c = 3 \end{align*}.

## Product, Quotient and Power Laws of Logarithms

\begin{align*} log_ax + log_ay &= log_a(xy) \\ \\ log_ax - log_ay &= log_a\bigg(\frac{x}{y}\bigg) \\ \\ log_ax^r &= rlog_ax \end{align*}

## Converting Exponential Equations into Linear Form

For example, by taking ln on both sides:

 Exponential Equation Linear Form $\displaystyle{ y=ae^{bx}}$ \begin{align*} ln \;y &= ln \;ae^{bx} \\ ln \;y &= ln \;a +ln \;e^{bx} \\ ln \;y &= ln \;a +ln \;e^{bx} \\ ln \;y &= ln \;a +bx\; ln \;e \\ ln \;y &= bx+ln \;a \\ Y = ln \;y&, \;X = x, \;m = b, \;c = ln \;a \end{align*}

Question 3:

Convert the following equations into linear form \begin{align*} Y = mX + c \end{align*}:

1. $\displaystyle{y = 2^{3x}}$
2. $\displaystyle{y^x = 5e^{–3x}}$
3. $\displaystyle{y = x^2 + e^x}$

Solution:

1. For the equation \begin{align*} y = 2^{3x} \end{align*}

\begin{align*} ln \;y &=ln \;2^{3x} \\ \\ ln \;y &=3x \;ln \;2 \\ \\ ln \;y &=(3 \;ln \;2)x \end{align*}

Therefore, \begin{align*} Y = ln \;y, \;X = x, \;m = 3\;ln \;2, \;c = 0. \end{align*}

1. For the equation $\displaystyle{y^x = 5e^{–3x}}$,

\begin{align*} ln \;y^x &= ln \;5 \;e^{-3x} \\ \\ ln \;y^x &= ln \;5\;+\;ln \;e^{-3x} \\ \\ x \;ln \;y &= ln \;5\;+\;(-3x)ln \;e \\ \\ x \;ln \;y &= ln \;5-3x \end{align*}

Therefore, \begin{align*} Y = x \;ln \;y, \;X = x, \;m = −3, \;c = ln \;5. \end{align*}

1. For the equation \begin{align*} y = x^2 + e^x \end{align*},

\begin{align*} ln \;(\;y\;-\;x^2\;) &= ln \;e^x \\ \\ ln \;(\;y\;-\;x^2\;) &= x \;ln \;e \\ \\ ln \;(\;y\;-\;x^2\;) &=x \end{align*}

Therefore, \begin{align*} Y = ln \;(y - x^2), \;X = x, \;m = 1, \;c = 0 \end{align*}

## Conclusion

In this article, we have learnt of the significance of converting non-linear equations in linear form. More specifically, we have learnt how to convert a non-linear algebraic equation and an exponential equation into linear form $y = mx + c.$

Be careful when manipulating a non-linear equation algebraically! For exponential equations, make sure the laws of logarithm are applied correctly to minimise errors.

A last important reminder is that $Y$ and $X$ should only contain $x$ and $y$ variables, while $m$ and $c$ should not contain any $x$ or $y$ variables. If this condition is not met, try converting the non-linear equation into a different linear form.

Keep learning! Keep improving!

Continue Learning
Quadratic Functions in Real-World Context Equations and Inequalities
Logarithmic Functions Surds
Polynomials & Cubic Equations Partial Fraction
Exponential Functions Coordinate Geometry (Circles)
Linear Law Binomial Theorem

Primary
Secondary
Book a free product demo
Suitable for primary & secondary
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
our educational content
Start practising and learning.
No Error
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Let’s get learning!
resources now.
Error
Oops! Something went wrong.
Let’s refresh the page!
Turn your child's weaknesses into strengths
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.

Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!