# Applications Of Integration

In this article, we will be learning about the different applications of integration. We will cover the following sub-topics:

• Evaluating definite integrals
• Properties of definite integrals

## Evaluating Definite Integrals

### Introduction

The notation $\int_a^bf(x) \,dx$ denotes $F(b) – F(a)$ where $F$ is the antiderivative of $f$.

Here $a$ is called the lower bound and $b$ is the upper bound.

We simply write it as,

\small{\begin{align*} \int_a^b f (x) \; dx &= \bigg [\,F (x)\,\bigg]_a^b \\ \\ &= F(b)- F(a) \end{align*}}

$F(a)$ is obtained by substituting $x = a$ into the function $F$, while $F(b)$ is obtained by substituting $x = b$ into the function $F$.

#### How is the notation $\small{\displaystyle{\int_a^bf(x) \,dx}}$ read?

Integrate $f(x)$ from $a$ to $b$ (from lower bound to upper bound), with respect to $x$.

It represents the area under the curve $f(x)$ from $a$ to $b$.

### Properties Of Definite Integrals

#### First Property Of Definite Integrals

The definite integral of the scalar multiple of a function can be evaluated as such:

\small{\begin{align*} \int_a^b kf (x) \;dx = k \bigg[\;F (x)\;\bigg]_a^b \end{align*}}

#### Second Property Of Definite Integrals

The definite integral of the sum or difference of functions can be evaluated as such:

\small{\begin{align*} \int_a^b f (x) \;dx \pm \int_a^b g(x) \;dx = \int_a^b f (x) \pm g(x) \;dx \end{align*}}

Keep in mind that the lower bound $a$ and upper bound $b$ must be the same for both integrals.

Question 1:

Evaluate the following integrals.

$\small{\mathrm{A.}\; \displaystyle{\int_1^2\,1+x+x^2\;dx}}$

Solution:

\small{\begin{align*} \int_1^21+x+x^2\;dx &= \bigg[\; x+\frac{x^2}{2}+\frac{x^3}{3} \;\bigg]_1^2 & &\text{First, integrate the expression.} \\ \\ &= \bigg(\;2+\frac{4}{2}+\frac{8}{3}\;\bigg) - \bigg(\;1+ \frac{1}{2}+\frac{1}{3}\;\bigg) & &\text{Substitute} \; x = 2\; \text{and}\; x = 1. \\ \\ &= 6\frac{2}{3} - 1\frac{5}{6} & &\text{Subtract the expressions.} \\ \\ &= 4\frac{5}{6} & &\text{Evaluate.} \end{align*}}

$\small{\mathrm{B.}\; \displaystyle{\int_0^{\tfrac{\pi}{6}} cos\;3x \;dx}}$

Solution:

\small{\begin{align*} \int_0^{\tfrac{\pi}{6}} cos\;3x \;dx &= \bigg[\; \frac{sin\,3x}{3} \;\bigg]_0^{\tfrac{\pi}{6}} \\ \\ &= \bigg(\; \frac{sin\,\frac {\pi}{2}} {3} \;\bigg) - \bigg(\; \frac {sin\,0} {3} \;\bigg)\\ \\ &= \frac {1}{3} - 0 \\ \\ &= \frac {1}{3} \end{align*}}

$\small{\mathrm{C.}\; \displaystyle{\int_2^3 \frac{2}{2x-3} \;dx}}$

Solution:

\small{\begin{align*} \int_2^3 \frac{2}{2x-3} \;dx &= \bigg[\; \frac{2\,\ln (2x-3)}{2} \;\bigg]_2^6 \\ \\ &= \bigg[\; \ln (2x-3) \;\bigg]_2^6 \\ \\ &= \big(\; \ln (2\times6-3) \;\big) - \big(\; \ln (2\times2-3) \;\big) \\ \\ &= \big(\; \ln (12-3) \;\big) - \big(\; \ln (4-3) \;\big) \\ \\ &= \ln 9 - \ln 1 \\ \\ &= \ln 9 - 0 \\ \\ &= \ln 9 \end{align*}}

Question 2:

Evaluate $\small{\displaystyle{\int_1^2 1 +x^2 \;dx}}$

Solution:

\small{\begin{align*} \int_1^2 1 +x^2 \;dx &= \bigg[\; x+\frac{x^3}{3}\;\bigg]_1^3 \\ \\ &= \bigg(\; 3+\frac{27}{3}\;\bigg)-\bigg(\; 1+\frac{1}{3}\;\bigg) \\ \\ &= 12 -1\frac{1}{3} \\ \\ &= 10\frac{2}{3} \end{align*}}

Question 3:

Evaluate $\small{\displaystyle{\int_{\tfrac{\pi}{12}}^{\tfrac {\pi}{6}}3\;sec^2\,2x\;dx }}$, leaving your answer in exact form.

Solution:

\small{\begin{align*} \int_{\tfrac{\pi}{12}}^{\tfrac {\pi}{6}}3\;sec^2 2x\;dx &= \bigg[\; \frac{3 \;tan \;2x}{2} \;\bigg]_{\tfrac{\pi}{12}}^{\tfrac {\pi}{6}} \\ \\ &= \bigg(\; \frac{3 \;tan \;{\frac{\pi}{3}}}{2} \;\bigg) - \bigg(\; \frac{3 \;tan \;{\frac{\pi}{6}}}{2} \;\bigg) \\ \\ &= \frac { 3\sqrt{3} } {2} - \frac{3}{2} \cdot \frac{\sqrt{3}}{3} \\ \\ &= \frac{2\sqrt{3}}{2} \\ \\ &= \sqrt{3} \end{align*}}

#### Third Property Of Definite Integrals

If the lower bound and upper bound are equal in value, the result of the definite integral is $0$.

\small{\begin{align*} \int_ a^a f(x)\; dx &= \bigg[\;F(x)\;\bigg]_a^a \\ \\ &= F(a) - F(a) \\ \\ &= 0 \end{align*}}

#### Fourth Property of Definite Integrals

If the lower bound and upper bound are swapped, the result of the new definite integral is equal in value but opposite in sign (i.e., positive vs. negative) compared to the original definite integral.

\small{\begin{align*} \int_ b^a f(x) \;dx &= \bigg[\;F(x)\;\bigg]_b^a \\ \\ &= F(a) - F(b) \\ \\ &= -\bigg(\;F(b) - F(a)\;\bigg) \\ \\ &= -\bigg[\;F(x)\;\bigg]_a^b \\ \\ &= -\int_ a^b f(x)\, dx \end{align*}}

#### Fifth Property of Definite Integrals

For definite integrals of the same function, where the upper bound of the first integral is equal in value to the lower bound of the second integral:

\small{\begin{align*} \int_ a^b f(x) \;dx + \int_ b^c f(x) \;dx = \int_ a^c f(x) \;dx \end{align*}}

Graphically,

## Conclusion

In this article, we learned about definite integrals and how they are different from indefinite integrals. We also learned the five different properties associated with definite integrals.

Keep improving! Keep learning!

Continue Learning
Introduction To Differentiation Applications Of Differentiation
Differentiation Of Exponential And Logarithmic Functions Integration Techniques
Applications Of Integration
Primary
Secondary
Book a free product demo
Suitable for primary & secondary
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
our educational content
Start practising and learning.
No Error
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Let’s get learning!
resources now.
Error
Oops! Something went wrong.
Let’s refresh the page!
Turn your child's weaknesses into strengths
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.

Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!