chevron icon chevron icon chevron icon

Angle Properties

In this article, we are going to study about Angles as per the Primary 5 Maths requirements. We will be learning about the angle properties involving lines. 

In this article, the learning objectives are:

  1. Adjacent angles on a straight line
  2. Angles at a point
  3. Vertically opposite angles

1. Adjacent Angles On A Straight Line

Adjacent angles on a straight line add up to \(180^\circ\).

\(\begin{align} \mathrm{\angle{a} + \angle{b}} = \mathrm{180^\circ} && \text{(angles on a straight line)} \end{align}\)

 

Question 1: 

\(\mathrm{AB}\) is a straight line. Find \(\mathrm{\angle{b}}\).

 

Solution: 

\(\begin{align*} \mathrm{\angle{b} + 45^\circ} &= \mathrm{180^\circ} & \text{(angles on a straight line)} \\[2ex] \mathrm{\angle{b}} &= \mathrm{180^\circ - 45^\circ}\\[2ex]   &= \mathrm{135^\circ} \end{align*}\)

Answer:

\(135^\circ\)

 

Question 2: 

The following figure is not drawn to scale. Find \(\mathrm{\angle{y}}\). 

 

Solution: 

\(\begin{align} \mathrm{\angle{y} + 88^\circ + 36^\circ} &= \mathrm{180^\circ} & \text{(angles on a straight line)} \\[2ex] \mathrm{\angle y} &= \mathrm{180^\circ - 88^\circ - 36^\circ} \\[2ex] &= \mathrm{56 ^\circ} \end{align}\)

Answer:

\(\mathrm{56^\circ}\)

 

Question 3: 

In the figure below, \(\mathrm{KLM}\) is a straight line. \(\mathrm{\angle{KLN}} = \mathrm{122^\circ}\) and \(\mathrm{\angle{JLM}} = \mathrm{105^\circ}\). Find \(\mathrm{\angle{JLN}}\)

 

Solution: 

\(\begin{align*} \mathrm{\angle{KLN} + \angle{NLM}} &= \mathrm{180^\circ}​​​​​​​ & \text{(angles on a straight line)}\\[2ex] \mathrm{122^\circ + \angle{NLM}} &= \mathrm{180^\circ} \\[2ex] \mathrm{\angle{NLM}} &= \mathrm{180^\circ - 122^\circ} \\[2ex] \mathrm{\angle{NLM}} &= \mathrm{58^\circ} \end{align*}\)

\(\begin{align*} \mathrm{\angle{JLN} + \angle{NLM}} &= \mathrm{105^\circ}\\[2ex] \mathrm{\angle{JLN} + 58^\circ} &= \mathrm{105^\circ}\\[2ex] \mathrm{​​​​​​​\angle{JLN}} &= \mathrm{105^\circ - 58^\circ}\\[2ex] \mathrm{\angle{JLN}} &= \mathrm{47^\circ} \end{align*}\)

Answer: 

\(\mathrm{47^\circ}\)

 

OR

\(\begin{align*} ∠JLM + ∠JLK &= 180º \;\;\;\;\;(angles \;on \;a \;straight \;line)\\ 105º + ∠JLK &= 180º\\ ∠JLK &= 180º - 105º\\ ∠JLK &= 75º\\ \end{align*} \)

\(\begin{align*} ∠JLK + ∠JLN &= 122º\\ 75º + ∠JLN &= 122º\\ ∠JLN &= 122º − 75º \\ &= 47º\\ \end {align*}\)

Answer: 

\(47º\)

2. Angles At A Point

Angles at a point add to \(360º\)

\(∠a + ∠b + ∠c = 360º\)     (angles at a point)

 

Question 1: 

Find \(∠c\).

 

 

Solution: 

\(\begin{align*} 140º + 60º + ∠c &= 360º \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(angles \;at \;a \;point)\\ ∠c &= 360º - 140º - 60º \\      &= 160º \\ \end{align*}\)

Answer:

\(160º\)

 

Question 2: 

Find the sum of \(∠d\) and \(∠e\).

 

 

Solution: 

\(\begin{align*} 75º + 75º + ∠d + ∠e &= 360º \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(angles \;at \;a \;point)\\ ∠d + ∠e &= 360º - 75º - 75º \\ &= 210º \end{align*}\)

Answer:

\(210º\)

 

Question 3: 

The following figure is not drawn to scale. Find \(∠z\)

 

 

Solution: 

\(\begin{align*} ∠z + 86º + 81º + 90º &= 360º \;\;\;\;\;\;\;\;\;(angles \;at \;a \;point) \\ ​​​​​​​∠z &= 360º - 90º - 86º - 81º \\ ∠z &= 103º \\ \end{align*}\)

Answer:

\(103º\)

3. Vertically Opposite Angles

When two straight lines intersect, the opposite angles are equal. The point where they meet is called the vertex.

\(∠a = ∠c\)     (vertically opposite angles)

\(∠b = ∠d\)     (vertically opposite angles)

 

Question 1:   

\(AB\) and \(CD\) are straight lines. Name the 2 pairs of angles that are equal.

 

 

Solution: 

\(∠a\) and \(∠c\) are vertically opposite angles. 

\(∠b\) and \(∠d\) are also vertically opposite angles.

As per the properties of vertically opposite angles,

\(∠a = ∠c\) and \(∠b = ∠d\)

Answer:

 \(∠a = ∠c\) and \(∠b = ∠d\)

 

Question 2: 

\(AB\) and \(CD\) are straight lines. Find \(∠b\). 

 

 

Solution: 

\(AB\) and \(CD\) are two straight lines that meet. 

\(∠b = 35º\)     (vertically opposite angles)

Answer:

35º

 

Question 3: 

In the figure below, \(AB\) and \(CD\) are straight lines. \(∠AOC = 25º\)

  1. Find \(∠BOE\).
  2. Find \(∠AOD\).

 

 

Solution: 

(a)

\(AB\) is a straight line.

\(\begin{align*} ∠AOC + ∠COE + ∠BOE &= 180º \;\;\;\;\;\;\;\;\;(angles \;on \;a \;straight \;line)\\ ∠BOE &= 180º - 25º - 90º\\ &= 65º\\ \end{align*}\)

 

(b)

\(AB\) and \(CD\) are two straight lines that intersect. 

\(\begin{align*} ∠AOD &= ∠BOC \;\;\;\;\;\;\;\;\;(vertically \;opposite \;angles) \\ ∠AOD &= 90º + 25º \\ &= 115º \\ \end{align*}\)

Answer:

(a) \(65º\)

(b) \(115º\)

 

Question 4: 

The figure below is not drawn to scale. \(AD\) and \(BC\) are straight lines. The ratio of \(∠a\) to \(∠b\) is \(3 : 2\). Find the difference between \(∠a\) and \(∠c\)

 

 

Solution: 

\(BC\) is a straight line.

\(\begin{align*} ∠c + ∠AOC &= 180º \;\;\;\;\;\;\;(angles \;on \;a \;straight \;line)\\ ∠c &= 180º - 155º \\ &= 25º \\ \end{align*}\)

 

\(AD\) and \(BC\) are two straight lines that meet. 

\(\begin{align*} ∠a + ∠b &= 155º \;\;\;\;\;\;\;(vertically \;opposite \;angles)\\\\ ∠a : ∠b &= 3 : 2 \\ \\ 5 \;units &= 155º \\ 1 \;unit &= 155º \div5 \\ &= 31º \\ \\ ∠a &= 3 \;units \\ &= 3 × 31º \\ &= 93º \\ \\ ∠b &= 2 \;units \\ &= 2 × 31º \\ &= 62º \\ \end{align*}\)

 

Difference between \(∠a\) and \(∠c\)

\(\begin{align*} &= 93º - 25º \\ &= 68º \\ \end{align*} \)

Answer:

\(68º\)

Conclusion

In this article, we learned about the different types of angles and their properties. 

  • Properties of angles involving lines

Angles On A Straight Line

Angles At A Point

Vertically Opposite Angles

\(∠a + ∠b = 180º\)

\(∠a + ∠b + ∠c = 360º\)

\(∠a = ∠c\\ ∠b = ∠d\)
 

 

Continue Learning
Volume Of A Liquid Decimals - Operations & Conversions
Ratio: Introduction Average - Formula
Percentage, Fractions And Decimals Whole Numbers
Strategy - Equal Stage Angle Properties
Table Rates Whole Number Strategy: Gap & Difference
Fractions - Addition & Subtraction Ratio Strategy: Repeated Identity
Resources - Academic Topics
icon expand icon collapse Primary
icon expand icon collapse Secondary
icon expand icon collapse
Book a free product demo
Suitable for primary & secondary
select dropdown icon
Our Education Consultants will get in touch with you to offer your child a complimentary Strength Analysis.
Book a free product demo
Suitable for primary & secondary
icon close
Default Wrong Input
Get instant access to
our educational content
Start practising and learning.
No Error
arrow down arrow down
No Error
*By submitting your phone number, we have
your permission to contact you regarding
Geniebook. See our Privacy Policy.
Success
Let’s get learning!
Download our educational
resources now.
icon close
Error
Error
Oops! Something went wrong.
Let’s refresh the page!
Claim your free demo today!
Geniebook CTA Illustration Geniebook CTA Illustration
Turn your child's weaknesses into strengths
Geniebook CTA Illustration Geniebook CTA Illustration
close icon
close icon
Turn your child's weaknesses into strengths
Trusted by over 220,000 students.
 
Arrow Down Arrow Down
 
Error
Oops! Something went wrong.
Let’s refresh the page!
Error
Oops! Something went wrong.
Let’s refresh the page!
We got your request!
A consultant will be contacting you in the next few days to schedule a demo!
*By submitting your phone number, we have your permission to contact you regarding Geniebook. See our Privacy Policy.